

igus® solutions for the robot industry Quickly find the right solution for your application

Index

Introduction	>	Page	1
About igus®	▶	Page	2
QuickRobot, robot equipment		Dago	10
configurator, configuration examples		Page	10
Application examples, 3D e-chains®	▶	Page	14
3D e-chains® for robots and 3D movements	>	Page	20
triflex® R TRC series	•	Page	28
triflex® R TRE series	•	Page	30
triflex® R TRCF series	•	Page	32
triflex® R TRL series		Page	34
triflex® R TRLF series	▶	Page	36
triflex® R accessories			
Standard mounting brackets		Page	38
Light mounting brackets		Page	40
Mounting brackets, radius support	•	Page	42
Gliding feed-throughs	•	Page	43
Protectors		Page	47
Swivel bearing mounting brackets		Page	44
Swivel bearing gliding feed-throughs		Page	46
Heavy duty connections for axis 6		Page	48
Heavy duty connections for	•	Page	49
axis 6, radius support	_	- ugo	
Compact connections for clamp axis 6		Page	50
Quick exchange kit for clamp axis 6		Page	52
chainfix clamps	•	Page	53
UR mounting clamps	•	Page	54
Mounting clamps for KUKA LBR iiwa	•	Page	54
Cobot mounting clamps		Page	58
Protective jackets		Page	60
Interior separation configurator	▶	Page	61
triflex® R retraction systems		Page	62
RS retraction system		Page	66
RSP retraction system	•	Page	74
RSE retraction system	_	Page	
RSE linear retraction system		Page	90
RSEL retraction system	▶	Page	100
triflex® R more accessories			
Fibre-rod modules and universal mounting kits	_	Page	
Adjustment units for retraction systems	_	Page	
Adapter consoles for retraction systems	_	Page	
Clamps for attachment to axis 6		Page	
triflex®R assembly instructions	>	Page	116

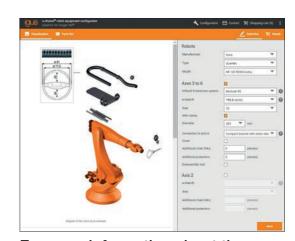
3D e-chains® for robots and 3D movements	► Page 124
easy triflex®	▶ Page 126
triflex®	▶ Page 128
e-chains® for circular & rotary movements	▶ Page 124
twisterchain	▶ Page 132
twisterband	▶ Page 148
Rotating energy supplies, <i>RBR</i>	▶ Page 150
E4.1 system	▶ Page 152
Twistable chainflex® cables for robots and 3D applications	► Page 160
About chainflex®	▶ Page 162
Control cable, CF77.UL.D	► Page 168
Control cable, CFROBOT2	▶ Page 172
Data cable, CFROBOT3	▶ Page 174
Measuring system cable, CFROBOT4	▶ Page 176
Fibre Optic Cable, CFROBOT5	▶ Page 180
Motor cable, CFROBOT6	▶ Page 182
Motor cable, CFROBOT7	▶ Page 184
Spindle cable/Single core CFROBOT	► Page 188
Bus cable, CFROBOT8	▶ Page 190
Bus cable, CFROBOT8.PLUS	► Page 194
Hybrid cable, CFROBOT9	▶ Page 198
Robotics, harnessed hoses and cables for robots	▶ Page 202
readychain® robot, ready to install harnessed e-chain systems® for robots	► Page 204
triflex® readychain® dress packs for welding robots	▶Page 205
readycable® robot, harnessed cables - Kuka Quantec	► Page 206
readycable® robot, harnessed cables - Kuka Fortec	▶ Page 207
readycable® robot, harnessed cables - Kuka Titan	► Page 208
readycable® robot, harnessed cables - Fanuc M-900iB	► Page 210
readycable® robot, harnessed cables - according to AIDA specification	▶ Page 211
Other contents	
igus® readychain®, ready to install harnessed e-chain systems® for robots	► Page 212
drylin® T	▶ Page 220

igus® locations

▶ Page 228

QuickRobot

The complete online equipment tool for robot accessories



Energy supply for robots made configurable online: Around 10,000 different options for component selection for the energy supply on a robot

The QuickRobot robot equipment configurator from igus® contains around 10,000 different options for around 400 robot models. Find the right parts in seconds by entering just the robot manufacturer and model. The desired chain size can be selected by diameter.

- You can select your robot model from a variety of well known manufacturers and models
- Output a complete parts list, the total price and the estimated delivery time of your configuration
- Easy transfer to the shopping cart, complete configuration or individual parts, no minimum order quantity
- Save, download or reset your individual configuration
- Create PDF report of your configuration
- Also suitable for iPad

More information ▶ www.igus.co.uk/quickrobot

For more information about the QuickRobot complete online equipment tool and example configurations, see ▶ Page 12

motion? plastics! Increase service life and reduce costs ...

... the goal of all igus® products is to always offer at least one of these.

Other benefits are the fast delivery time, from 24hrs until shipping, plus the service life calculation for nearly all product lines. We will be happy to send you free sample parts for your testing and prototypes. Tested and proven service life. Available immediately with online service life calculators.

Available from stock. Ready for delivery in 24–48hrs.

The delivery times indicated correspond to the verage time until the ordered goods are dispatched.

No minimum order value! No surcharges!

No minimum order value with igus®. Just order the amount you need.

Chain - Cable - Guarantee

Beyond the legal warranty we also vouch for wear and tear. With a warranty certificate!

"8 to 8 plus Saturday" service

Monday to Friday 8:00am to 8:00pm Saturday from 8:00am to 12:00pm

Order hotline

Phone (01604) 677240 E-mail sales@igus.co.uk

Order around-the-clock – online shop

Discover 100,000 products in our online shop and order around-the-clock!

Calculate and configure online

Download 3D CAD models free of charge and quickly find the product you are looking for with our product finders and intelligent filters.

igus® online live chat

There are many ways to reach us. For example, you can use our online live chat.

Do you have any questions?

If you have any questions, simply call us or use our online tools at ▶ www.igus.co.uk

Modular robot kit

Energy supply for robots made configurable online

The modular igus® robot construction kit offers well over 10,000 different options. We can offer you an optimised solution for almost every robot. With a wide variety of accessories, the triflex® R energy chain system can be adapted to many applications and the most varied movements of your robot.

With our online "Quick Robot" tool, the right configuration for your application can be created in just a few seconds. The configurator gives you a visual representation of the products on the robot and a parts list try it for yourself ▶ www.igus.co.uk/quickrobot

All igus® robotic components are tested in our laboratory and have already been used reliably in many applications for years. Our goal is to ensure that the whole energy supply on your robots is reliable. We do not simply focus on mechanical protection but instead look at the entire application including the cables that have also been especially developed for use on the robot. We will gladly find a solution for your application and look forward to receiving your enquiry.

John Slater

Robotic and automotive plant specialist Mobile: 07964 945279 islater@igus.co.uk

We are always happy to visit you on site and show you the advantages of the modular igus® robot kit. Contact us at ▶ www.igus.co.uk/robot

triflex® R sample boxes - full of information and samples specific to the robotics industry.

Quality from the igus[®] laboratory

Tested thousands of times. Proven millions of times.

Applications involving high duty cycles, speeds and accelerations or demanding environmental conditions require proven systems especially for e-chains®, cables, polymer bearings and linear systems. igus® constantly conducts tests at its own laboratory under real-world conditions. Every year, we conduct more than 4,100 tests on e-chains® and cables, and over 12,000 tests on plain bearings. These tests focus on push/pull forces, coefficient of friction and wear rates. Other factors like speed, load, dirt, weathering, cold and impact are also tested. Our laboratory is also at your disposal. If we don't have data for your type of application, we can conduct a test representative of your requirements.

More information ▶ www.igus.co.uk/test

igus® system warranty - every application is different. igus® warranty certificates can be issued for your individual application. Ask for the igus® warranty: "chain, cable, guarantee"

All products are tested and available from a single source. Examples of test certificates and quality seals for igus® products ... more upon request

Electronic checking and archiving for every e-chain® production batch

Long-term wear and service life test

Noise level test inside an igus® acoustic cell

Speeds up to 10m/s, acceleration up to 200m/s² are tested by igus®

igus® dynamic bending test

Long travel test facility - 125m travel length, speed 300m/min

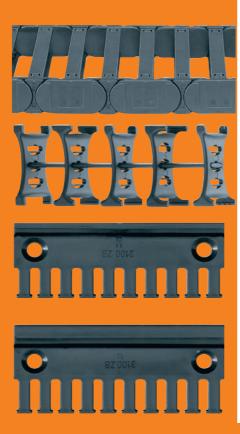
Worldwide, quick and reliable.

The igus® service

Delivery and consultation daily from 8am to 8pm, Saturday from 8am to 12pm!

Innovation and service are the focus of our corporate philosophy. We have put together an extensive package of services for you: no minimum order quantity, speedy delivery from 24hrs, more than 100,000 products from stock. Order an iglidur® plain bearing or a harnessed standard portal from stock in 24 hours at no extra cost. Rapid delivery worldwide guaranteed. Spare parts are delivered from stock in the shortest possible time.

Take advantage of further service options from igus®:


- Free samples: We will be happy to send you free samples for testing in your application. Order here
- www.igus.co.uk/samples
- The monthly newsletter keeps you regularly informed about new igus® solutions. Register here
- www.igus.co.uk/newsletter

Order at igus®:

no minimum order quantities, no surcharges.

24_{hrs}

igus® individual components for example: an e-chain® link, 6 m e-chain®, 3 strain relief units, etc.

24-48_{hrs}

Tailored igus® e-chain systems® - for example: 11.46 and strain relief according to your specification. Also with cables, guide troughs, mounting brackets and strain relief

Harnessed igus® e-chain systems® - for example readychain® "Basic": Simple, systems® with cables fitted without connectors, labelled and with defined tail lengths to your specification

10 business days

Complex harnessed e-chain systems® - for example readychain® "premium": with all kinds of cables as well as connectors, mounting brackets and other components according to your specification

▶ www.igus.co.uk/myigus


More information ▶ www.igus.co.uk

igus® – close to the customer since 1964

From a garage to the global market with tribopolymers

What began in 1964 with a single injection moulding machine in a garage in Cologne has within half a century become a global enterprise. It all started more than 50 years ago when Günter Blase, who established the company, had an idea about the potential of polymer materials. Just one year after the company was established, an injection moulding machine about the size of a sewing machine was used to make the very first products; in 1983, a lubrication-free and maintenance-free iglidur® plain bearing from large volume production was presented for the first time. Since then, over 50 different catalogue materials have been developed that are used worldwide in countless applications under the "dry-tech®" name for bearing technology.

Today, the 3,800 employees come up with new ideas daily, make high-quality products, ensure streamlined processes and delivery times and, above all, stay close to our customers. On average, igus® dispatches around 5,500 consignments per day. In order to ensure speedy and individual delivery, customers receive exactly the product they need for their application from 14 storage and assembly/installation centres worldwide: as a single component or as a complete system, also installed or assembled on site upon request.

Subsidiaries

Products with variants

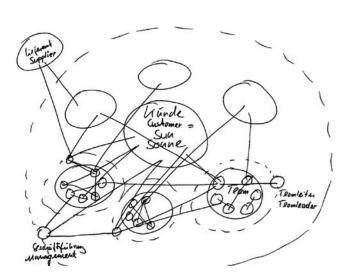
The flexible igus factory Investments in better technol-

ogy and faster delivery times

Nearly 200,000 customers worldwide trust "plastics for longer life®" - manufacturing products at low-cost, while also ensuring quality. Plastics are becoming increasingly affordable and technical benefits continue to grow. We have been developing, making and selling our products according to this principle for years. In view of the potential of plastics technology, we offer a wide and varied range of tribo components. Wear resistant parts as catalogue items are on stock, to allow us to complete customer requests within hours and ship.

igus® is continuing its growth trend and is focusing more than ever on sophisticated yet simpler solutions for all applications and budgets.

Assembly factory

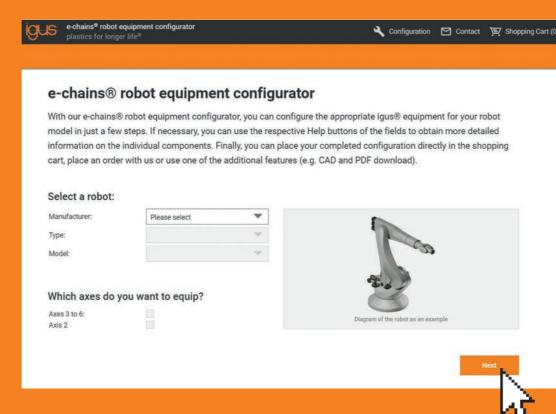


Toolmaking

Open offices

"For us, customers have the same significance as the sun to life on earth. The sun gives light, warmth and energy; our customers give us ideas, work and money."

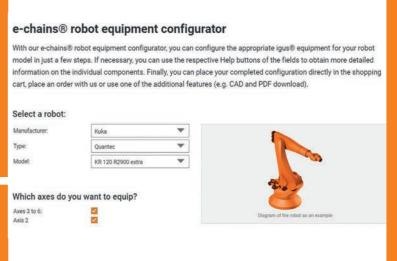
QuickRobot


The complete online equipment tool for robot accessories from igus®

Energy supply for robots made configurable online: Around 10,000 different options for component selection for the energy supply on a robot

The QuickRobot robot equipment configurator from igus® contains around 10,000 different options for around 400 robot models. Find the right parts in seconds by entering just the robot manufacturer and model. The desired chain size can be selected by diameter.

- You can select your robot model from a variety of well known manufacturers and models
- Output a complete parts list, the total price and the estimated delivery time of your configuration
- Easy transfer to shopping cart, complete configuration or individual parts, no minimum order quantity
- Save, load and reset your individual configuration
- Create PDF report of your configuration
- Also usable on iPad


More information ▶ www.igus.co.uk/quickrobot

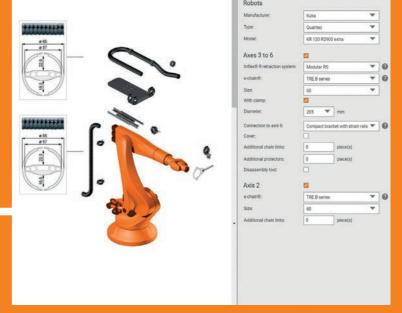
Step 01

The start page

www.igus.co.uk/quickrobot

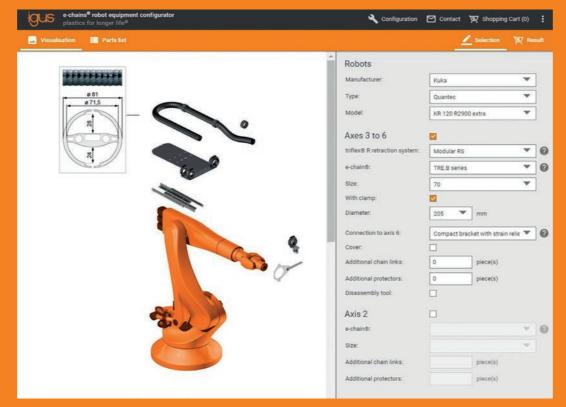
Please select a triflex® R retraction system:

Step 02
Robot
manufacturer and
model is selected

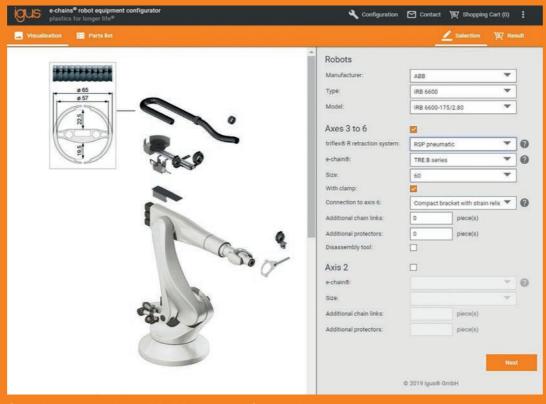

Step 03
The retraction system is selected

Step 05
Required parts list

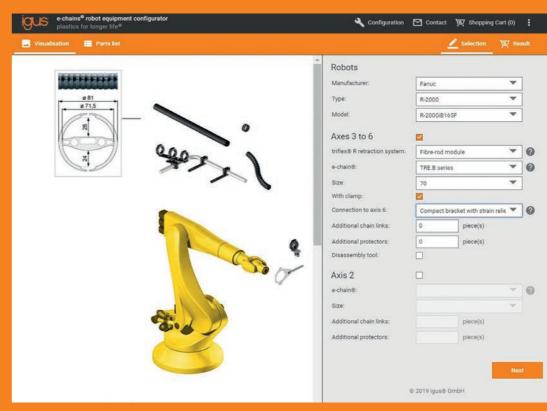
Step 04
List of chosen
parameters
with pictorial
representation


Configuration examples:

www.igus.co.uk/quickrobot

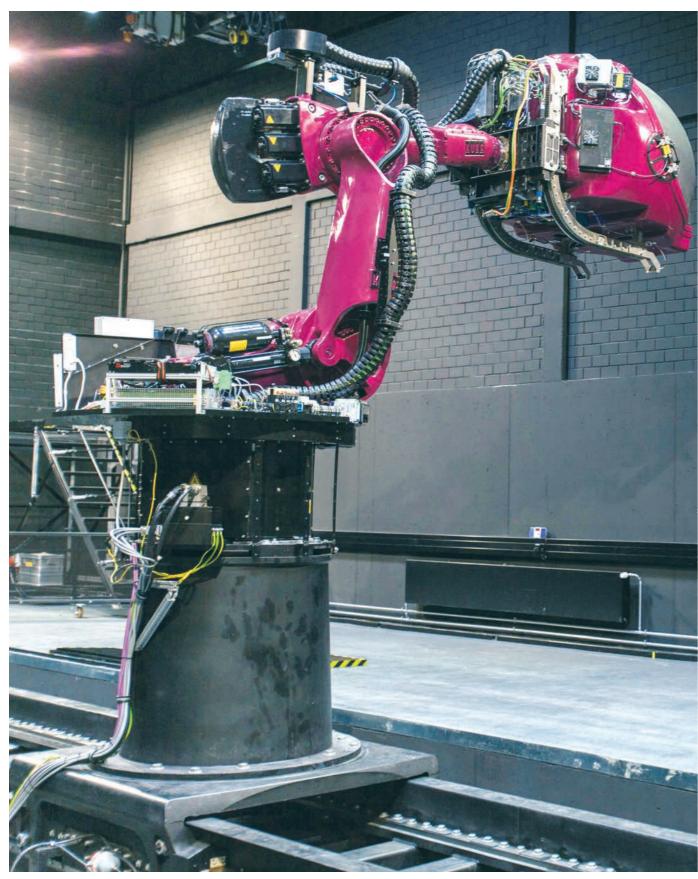

Easy-to-use online configuration tool

All igus® robotic components are tested in our laboratory and have already been used reliably in many applications for years. Our goal is to ensure that the whole energy supply on your robots is reliable. We do not simply focus on mechanical protection but instead look at the entire application including the cables that have also been especially developed for use on the robot. We will gladly find a solution for your application and look forward to receiving your enquiry.


We are always happy to visit you on site and show you the advantages of the modular igus® robot kit.


Sample configuration: KUKA KR 120 R2900 extra with RS retraction system, adjustment unit, bracket and connection to axis 6

Sample configuration: ABB IRB 6600 - 175/2.80 with RSP retraction system, mounting adapter, bracket and connection to axis 6


Sample configuration: FANUC R1000 with fibrerod module, universal mounting kit, bracket and connection to axis 6

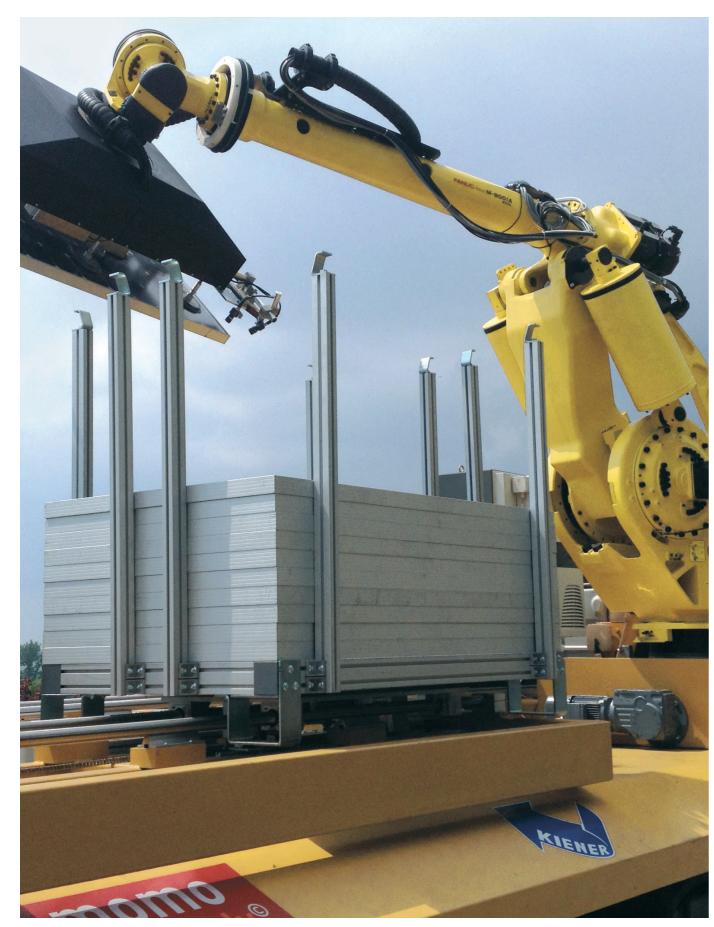
Sample configuration: Motoman/Yaskawa ES165 with RSE linear retraction system, mounting adapter, bracket and connection to axis 6

the-chain

Moving energy made easy - for robots

triflex® R in a motion simulator. Depending on the test, the simulator must perform a cabin rotation of up to 360° and is equipped with additional data and supply cables. A triflex® RSP retraction system is installed here.

Application examples igus® 3D e-chains®


triflex® R in storage and retrieval system

Flexible production of plastic vehicle tanks. In order to provide the end customer in the automotive industry with maximum flexibility, the production facilities are equipped completely with robots. The igus® RSP systems prevent loop formation of the e-chains® due to the multi-axis movements of the robot.

the-chain

Moving energy made easy - for robots

Reliable energy supply even outdoors

Application examples igus® 3D e-chains®

triflex® R installed on a robot arm

Use in harsh, dirty environments

triflex® R at axis 1-6, E4.1 at axis 7 of the robot

Close routing on the robot arm without loop formation

triflex® TRL - lightweight, for quick cable removal

Process security with the igus® installation service

the-chain

Moving energy made easy - for robots

triflex® R e-chains® for multi-axis and linear application with E2 mini e-chain® on the tool unit

Application examples igus® 3D e-chains®

Rotating energy supply system using RBR E4 in a telescope, which is exposed to strong snow and sand.

Laser measuring telescope with triflex® R. Rotary movement in both directions ≤ 310°

An igus® twisterband guides the energy of the 5-axis cutting heat in this wood working machine, safe and cost-effective

Rotating energy supply E4 RBR provides the port crane with energy - rotary movement

triflex® R in a magnesium die-casting industry (heat, dirt, oil, metal chips, dust) - failsafe

E2 mini, Series B15 - The motor spindle has a rotation range of approx. 210°

Key benefits for the robotics industry

For multi-axis movements and robots - triflex® R

triflex® R (R for "round") is the third generation of multi-axis igus® e-chains®. The key design characteristics of igus® triflex® R have made this product very successful in the robot industry.

- Defined torsion stop-dog on each e-chain[®] link
- Defined minimum bend radius
- High tensile strength ball and socket joint
- Compact retraction system options to prevent loop formation
- Fibre-rod option for partial directional control and reinforcement
- No extra support elements required e.g. steel cables, spring suspensions etc.
- Wide range of accessories

triflex® R available in 5 versions from stock

TRC closed design with smooth and robust exterior

TRE "easy" design, easy to fill from outside

TRCF closed design with snap lock mechanism

TRL very lightweight, with "easy" design

TRLF light version with snap lock mechanism

Typical industries and applications

The first choice for multi-axis robots
 Machine tools
 Handling machines - 6-axis
 Conveyor systems
 Packaging machines
 General mechanical engineering, etc.

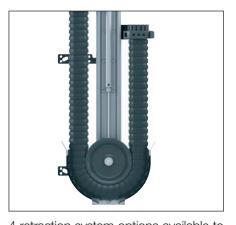
Available from stock. Ready to ship in 24 - 48hrs.*

*The delivery times indicated correspond to the average time until the ordered goods are dispatched.

triflex® R features

The defined torsion stop ensures an even distribution of the torsional load across the entire length

A tough, bend radius stop-dog actively prevents cables and hoses from kinking


Interior separation: two or three chamber design for reliable cable guidance

Openable - series TRCF and TRLF have snap lock mechanism for easy filling

Tensile strength is absorbed directly by the e-chain® - no additional supports are necessary

4 retraction system options available to prevent formation of loops in the robot's working area

Standard and light mounting brackets available with or without integrated strain relief. Some versions available in ESD material, from stock

Mounting brackets options with gliding feed-through and swivel bearing. Bearing with a maintenance-free igubal® ball and socket joint

Various heavy duty and compact connections and quick exchange units are available

Serie TRC - electrically conductive ESD e-chains® - several series available from stock

UL94-V2 classification

2013 for igus® series TRLF

Selection table

Series TRC closed design

≤ ø cable

d1 [mm] **d2** [mm]

Chip protection, smooth outer contour

Pitch

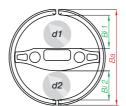
[mm]

d1	<u></u>
d2	Bi 2

Page

Series

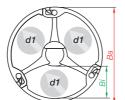
Links


per m

TRC.30	12	10	34.5	50	10	8	11.3	89	28
TRC.40	15	13	43	58	13	11	13.9	72	28
TRC.50	18.8	16.2	54	80	16.5	14	17.4	58	28
TRC.60	22.5	19.5	65	87	20.5	17.5	20.4	49	28
TRC.70	28	24	81	110	26	22	25.6	39	28
TRC.85	33	28	94.5	135	31	26	30.6	33	28
TRC.100	37.5	32.5	108	145	35.5	30.5	34.5	29	28
TRC.125 ¹⁾	43.3	43.3	135	182	41	41	44.1	23	28

Series TRE -"easy" design

Very easy to fill, cables are simply pushed in



TRE.30	12	10	34.5	50	10	8	11.3	89	30
TRE.40	15	13	43	58	13	11	13.9	72	30
TRE.50	18.8	16.2	54	80	16.5	14	17.4	58	30
TRE.60	22.5	19.5	65	87	20.5	17.5	20.4	49	30
TRE.70	28	24	81	110	26	22	25.6	39	30
TRE.85	33	28	94.5	135	31	26	30.6	33	30
TRE.100	37.5	32.5	108	145	35.5	30.5	34.5	29	30
TRE.125 ¹⁾	43.3	43.3	135	182	41	41	44.1	23	30

Series TRCF closed design with snap-lock mechanism

Chip protection, smooth outer contour

44 3	32
33 3	32
33 3	32
29 3	32
-	33 3

1) Max. cable diameter Ø 41mm. Max. cable diameter changes to Ø 36 mm, if lengthening or shortening an already populated triflex® R

3) Special size with increased bend radius and special range of accessories

Available from stock. Ready to ship in 24 - 48hrs.*

*The delivery times indicated correspond to the average time until the ordered goods are dispatched.

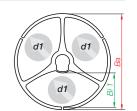
Selection table

Outer height Bend radius

Ba [mm]

Inner height

Bi1 [mm] Bi2 [mm]


Series TRL the "light" version with the "easy"-design

≤ ø cable

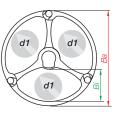
d1 [mm] **d2** [mm]

Pitch

Easy to fill and cost-effective

Links

per m


Page

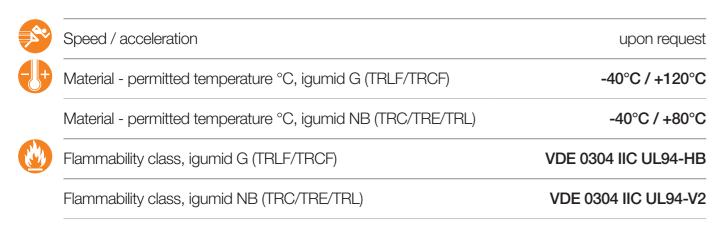
TRL.30 ²⁾	12.5	11	34.5	50	10	8	11.3	89	34
TRL.40	15	_	45	58	13	_	13.9	72	34
TRL.60	23	_	65	87	20.5	_	20.4	49	34
TRL.70	28	_	81	110	26	_	25.6	39	34
TRL.100	38	_	108	145	35.5	_	34.5	29	34

Series TRLF light version with snap lock mechanism

Lightweight and cost-effective

8 –	04.5						
	94.5	135	30	_	30.6	33	36
5 –	108	145	35.5	_	34.4	29	36
8 –	135	182	44.5	_	44.1	23	36

triflex® R retraction system | Overview


Series triflex® R	System triflex® R	For triflex® R e-chains®	For ø Index [mm]	Page
	RS modular retraction system	TRC·TRE	40 - 100	66
	RSP pneumatic retraction system	TRC·TRE·TRCF	60 - 125	74
	RSE cost-effective retraction system with deflection	TRC·TRE	40 - 50	82
	RSE linear space-saving retraction system	TRC·TRE·TRCF	40 - 100	90
New	RSEL cost-effective linear retraction system	TRC·TRE·TRCF	70 - 85	100

²⁾ TRL 30 with 2-chamber design

Technical data

Technical data

Reduce installation times with easy-to-use disassembly tools

Easy-to-use disassembly tools for triflex® TRE (B version) and TRCF. Easy disassembly at any point along the e-chain®, even

More information

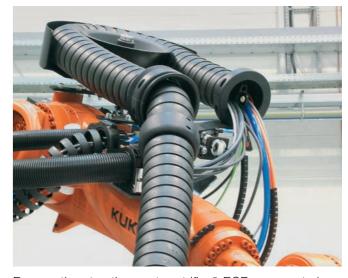
www.igus.co.uk/triflex_B_disassemblytool

Assembly video available online at www.igus.co.uk/triflexR_assembly

For series	Part No.
TRE.B	disassembly tool
TRE.40.B	MAT0050175
TRE.50.B	MAT0051190
TRE.60.B / TRE.70.B	MAT0051135
TRE.85.B	MAT0050170
TRE.100.B	MAT0050172

For series	Part No.	
TRE.B	disassembly tool	
TRCF.65	MAT0051135	
TRCF.85	MAT0050170	
TRCF.100	MAT0050172	
		_

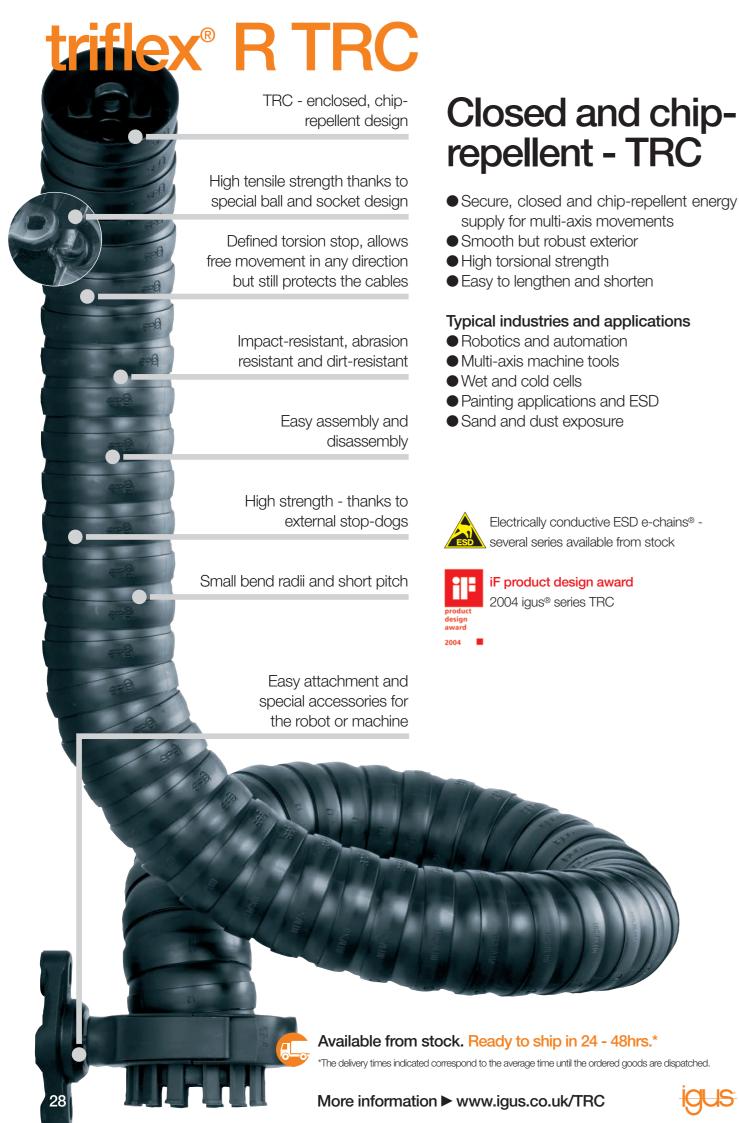
Applications


igus® triflex® R TRLF - light version, easily openable by hand or with a screwdriver

igus® triflex® R TRCF - closed version, openable with a screwdriver

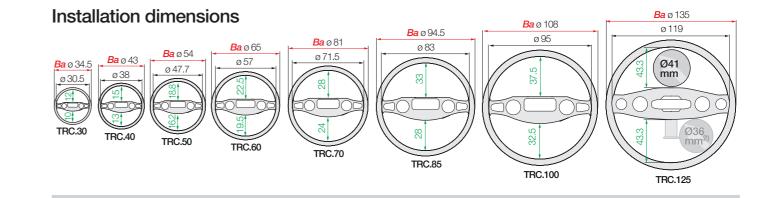
triflex® RS for a low profile retraction system. Integrated fibre rods generate the directed pretension so that loops do not form in the working area

Pneumatic retraction system triflex® RSP - prevents loop formation on the robot



triflex® TR.RSE.40.L or R, cost-effective and lightweight retraction system with guide roller, for small robots

TR.RSE linear retraction system for triflex® R, sizes 40-125



Robotic applications, closed, chip-repellent

e-tubes [mm] [mm]	S Weight	Links	Pitch	d2	d1	R	Ba	Bi2	Bi1	Part No.
TRC. 40. 058 .0¹¹) 15 13 43 058 13 11 13.9 72 TRC. 50. 080 .0 18.8 16.2 54 080 16.5 14 17.4 58 TRC. 60. 087 .0¹¹) 22.5 19.5 65 087 20.5 17.5 20.4 49 TRC. 70. 110 .0¹¹) 28 24 81 110 26 22 25.6 39 TRC. 85. 135 .0 33 28 94.5 135 31 26 30.6 33	n [kg/m]	per m	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	e-tubes
TRC. 50. 080 .0 18.8 16.2 54 080 16.5 14 17.4 58 TRC. 60. 087 .0¹¹ 22.5 19.5 65 087 20.5 17.5 20.4 49 TRC. 70. 110 .0¹¹ 28 24 81 110 26 22 25.6 39 TRC. 85. 135 .0 33 28 94.5 135 31 26 30.6 33	≈ 0.27	89	11.3	8	10	050	34.5	10	12	TRC. 30. 050 .0
TRC. 60. 087 .0¹) 22.5 19.5 65 087 20.5 17.5 20.4 49 TRC. 70. 110 .0¹) 28 24 81 110 26 22 25.6 39 TRC. 85. 135 .0 33 28 94.5 135 31 26 30.6 33	≈ 0.37	72	13.9	11	13	058	43	13	15	TRC. 40. 058 .01)
TRC. 70. 110 .0¹) 28 24 81 110 26 22 25.6 39 TRC. 85. 135 .0 33 28 94.5 135 31 26 30.6 33	≈ 0.59	58	17.4	14	16.5	080	54	16.2	18.8	TRC. 50. 080 .0
TRC. 85. 135 .0 33 28 94.5 135 31 26 30.6 33	≈ 0.85	49	20.4	17.5	20.5	087	65	19.5	22.5	TRC. 60. 087 .0 ¹⁾
	≈ 1.32	39	25.6	22	26	110	81	24	28	TRC. 70. 110 .0 ¹⁾
TRC. 100.145 .0 37.5 32.5 108 145 35.5 30.5 34.5 29	≈ 1.75	33	30.6	26	31	135	94.5	28	33	TRC. 85. 135 .0
	≈ 2.38	29	34.5	30.5	35.5	145	108	32.5	37.5	TRC. 100.145 .0
TRC. 125.182 .0 43.3 43.3 135 182 41 41 2 44.1 23	≈ 4.70	23	44.1	412)	41	182	135	43.3	43.3	TRC. 125.182 .0

²⁾ TRE 125 max. cable diameter Ø 41mm. Max. cable diameter changes to Ø 36mm when an already populated e-chain® needs to be shortened or lengthened

ESD - Available in many sizes from stock

- Standardised product made from igumid ESD
- ESD material tested with over 10 million cycles for the toughest requirements
- Short delivery times including mounting brackets and interior separation; 24hrs,

¹⁾ Available as ESD version from stock

ex® R TRE TRE - "easy" design -Easy to fill simply press cables in simply press High tensile strength thanks to cables in - TRE special ball and socket design Defined torsion stop, allows Easy to fill energy supply for multi-axis free movement in any direction but still protects the cables High torsional strength Easy to shorten and lengthen. • B version - 4x increase in radial stability, "Easy" design for fast filling allows larger torsion forces with cables and hoses C version and TRE.125 - fast assembly due to pin connection and spherical igubal® joint allowing 50% higher tensile forces Simple tool for fast disassembly of the triflex® B versions Typical industries and applications Robotics and automation Spot welding and pick and place applications High strength - thanks to When fast cable replacement is required external stop-dogs Small bend radii and short pitch Electrically conductive ESD e-chains® upon request Easy attachment and Save time - easy disassembly special accessories for tool available for triflex® R the robot or machine TRE - very easy to fill, cables are simply pushed in Available from stock. Ready to ship in 24 - 48hrs.* The delivery times indicated correspond to the average time until the ordered goods are dispatched. More information ▶ www.igus.co.uk/TRE

Robotic applications, easy filling

e-chains® | Series TRE | "easy" design - simply press cables in

Part No.	Bi1	Bi2	Ba	R	d1	d2	Pitch	Links	Weight
e-chains®	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	per m	[kg/m]
TRE.30. 050.0	12	10	34.5	050	10	8	11.3	89	≈ 0.26
TRE.40. 058.0.B	15	13	43	058	13	11	13.9	72	≈ 0.36
TRE.50. 080.0.B	18.8	16.2	54	080	16.5	14	17.4	58	≈ 0.56
TRE.60. 087.0.B	22.5	19.5	65	087	20.5	17.5	20.4	49	≈ 0.83
TRE.70. 110.0.B	28	24	81	110	26	22	25.6	39	≈ 1.30
TRE.85. 135.0.B	33	28	94.5	135	31	26	30.6	33	≈ 1.67
TRE.100.145.0.B/C ¹⁾	37.5	32.5	108	145	35.5	30.5	34.5	29	≈ 2.35
TRE.125.182.0	43.3	43.3	135	182	41	41 2)	44.1	23	≈ 4.40

B-Series = 4-x higher torsion forces C-Series = quick assembly, 50% higher forces

1) Available as C-Version Part No. TRE.100.145.0.C

2) TRE 125: max. cable diameter Ø 41mm. Max. cable diameter changes to Ø 36mm when an already populated e-chain® needs to be shortened or lengthened TRE.LOCK

Ba ø 135 Installation dimensions **Ba** ø 108 ø 119 **Ba** ø 94.5 ø 71.5 **Ba** ø 43 **Ba** ø 34.5 Ø41 ø 38 ø 30.5 TRE.100

TRE.LOCK clips

Clips for a secure fit in the mounting bracket. Supplied with every mounting bracket. Please use the Part No. on the right for reordering individual parts

Part No. as an	Size
individual part	[mm]
TRE.30/40.LOCK	30/40
TRE.50/60.LOCK	50/60
TRE.70.LOCK	70/85

Part No. as an	Size
individual part	[mm]
TRE.100.LOCK	100
TRE.125.LOCK	125

Triflex® R TRCF

High tensile strength thanks to special ball and socket design

Defined torsion stop, allows free movement in any direction but still protects the cables

Easy to open for large, stiff hoses or many cables

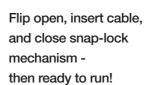
Easy assembly and disassembly - 4-piece, with openable lids

Impact-resistant and dirt-resistant

3-chamber design for interior separation

Small bend radii and short pitch

Mounting bracket with strain relief also available as intermediate bracket


Enclosed design with snap lock mechanism - TRCF

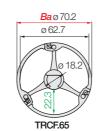
- Snap lock mechanism for fast opening to insert large cables or hoses
- Snap lock mechanism openable with a screwdriver
- Defined minimum bend radius and torsion stop-dog for optimum cable protection
- Enclosed version, for use with dirt and chip exposure
- 3 chamber design for ideal cable distribution and separation
- Easy to lengthen and shorten

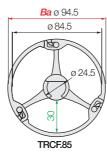
Typical industries and applications

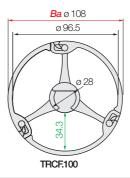
- Robotics and automation
- Painting applications
- Large hydraulic hoses
- Screw and rivet feeds
- Tool changer applications
- Robot for laser welding
- Robot for screw and rivet applications

Save time - easy disassembly tool available for triflex® R

Closed design, chip-resistant, quick filling


e-tubes | Series TRCF | Fully enclosed design, with snap lock mechanism


Part No.	Bi1	Ba	R	d1	Pitch	Links	Weight
e-tubes	[mm]	[mm]	[mm]	[mm]	[mm]	per m	[kg/m]
TRCF. 65 100 .0	22.3	70.2	100	20	23.1	44	≈ 1.10
TRCF. 65 200 .01)	22.3	70.2	200	20	23.1	44	≈ 1.10
TRCF. 85. 135 .0	30	94.5	135	28	30.6	33	≈ 2.10
TRCF. 85. 240 .0 ²⁾	30	94.5	240	28	30.6	33	≈ 2.10
TRCF. 100. 145 .0	34.3	108	145	32	34.5	29	≈ 2.70


1) Special size Part No. TRCF.65.200.0 with 200mm bend radius and a range of accessories

2) Special size Part No. TRCF.85.240.0 with 240mm bend radius and a range of accessories

Installation dimensions

Special sizes with increased bend radius

- The large bend radii 200/240 mm increase the service life of laser light cables and prevent kinking of hoses
- Special range of accessories available
- Special size part number TRCF.65.200.0 and TRCF.85.240.0

More information ▶ www.igus.co.uk/TRCF

Available from stock. Ready to ship in 24 - 48hrs.*

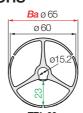
*The delivery times indicated correspond to the average time until the ordered goods are dispatched.

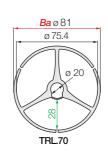
More information ▶ www.igus.co.uk/TRL

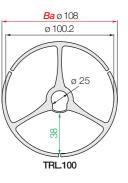
Product range

Robotic applications, light and cost-effective

e-chains® | TRL series | Light version with "easy" design - simply press cables in


Bi1	Bi2	Ba	R	d1	d2	Pitch	Links	Weight
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	per m	[kg/m]
12.5	11	34.5	050	10	8	11.3	89	≈ 0.26
15	_	45	058	13	_	13.9	72	≈ 0.29
23	_	65	087	20.5	_	20.4	49	≈ 0.49
28	_	81	110	26	_	25.6	39	≈ 0.82
38	_	108	145	35.5	_	34.5	29	≈ 1.42
	[mm] 12.5 15 23 28	[mm] [mm] 12.5 11 15 - 23 - 28 -	[mm] [mm] [mm] 12.5 11 34.5 15 - 45 23 - 65 28 - 81	[mm] [mm] [mm] [mm] 12.5 11 34.5 050 15 - 45 058 23 - 65 087 28 - 81 110	[mm] [mm] [mm] [mm] 12.5 11 34.5 050 10 15 - 45 058 13 23 - 65 087 20.5 28 - 81 110 26	[mm] [mm] [mm] [mm] [mm] 12.5 11 34.5 050 10 8 15 - 45 058 13 - 23 - 65 087 20.5 - 28 - 81 110 26 -	[mm] [mm] [mm] [mm] [mm] [mm] 12.5 11 34.5 050 10 8 11.3 15 - 45 058 13 - 13.9 23 - 65 087 20.5 - 20.4 28 - 81 110 26 - 25.6	[mm] [mm] [mm] [mm] [mm] per m 12.5 11 34.5 050 10 8 11.3 89 15 - 45 058 13 - 13.9 72 23 - 65 087 20.5 - 20.4 49 28 - 81 110 26 - 25.6 39


1) Only available with 2-chamber design


Installation dimensions

TRLF - light and cost-effective with snap lock mechanism

High tensile strength thanks to special ball and socket design

Defined torsion stop, allows free movement in any direction but still protects the cables

> Easy to open for large, stiff hoses or many cables

> > Easy assembly and disassembly

3-chamber design for interior separation

Small bend radii and short pitch

Lightweight mounting bracket available with strain relief or as intermediate bracket

Lightweight, with snap lock mechanism -**TRLF**

- Snap lock mechanism for fast opening
- Openable by hand or with a screwdriver
- For large, stiff hoses or many cables
- Economical multi-axis e-chain[®] for less demanding applications
- Easy to lengthen and shorten

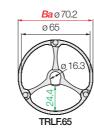
Typical industries and applications

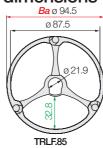
- Painting hoses
- Rivet feeds
- Robot axes 1-3
- Non-robotic applications
- Special machine construction
- High-tech design

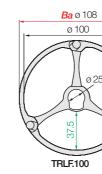
iF product design award

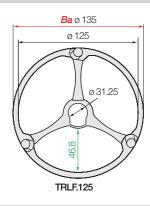
2013 igus® series TRLF

and close snap-lock

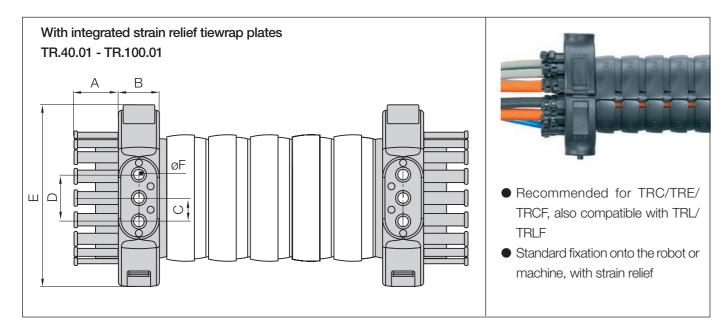

Quick filling with larger hoses and cables




e-chains® | Series TRLF | Light version with snap lock mechanism


Bi1	Ba	R	d1	Pitch	Links	
[mm]	[mm]	[mm]	[mm]	[mm]	per m	[kg/m]
24.4	70.2	100	22	23.1	44	≈ 0.79
32.8	94.5	135	30	30.6	33	≈ 1.45
37.5	108	145	35.5	34.5	29	≈ 1.90
46.8	135	182	44.5	44.1	23	≈ 4.13
	[mm] 24.4 32.8 37.5	[mm] [mm] 24.4 70.2 32.8 94.5 37.5 108	[mm] [mm] [mm] 24.4 70.2 100 32.8 94.5 135 37.5 108 145	[mm] [mm] [mm] [mm] 24.4 70.2 100 22 32.8 94.5 135 30 37.5 108 145 35.5	[mm] [mm] [mm] [mm] 24.4 70.2 100 22 23.1 32.8 94.5 135 30 30.6 37.5 108 145 35.5 34.5	[mm] [mm] [mm] [mm] per m 24.4 70.2 100 22 23.1 44 32.8 94.5 135 30 30.6 33 37.5 108 145 35.5 34.5 29

Installation dimensions

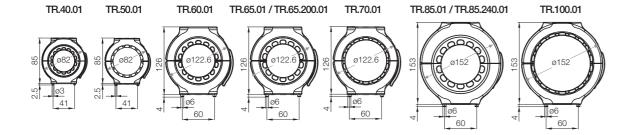

▶ www.igus.co.uk/TRLF

Available from stock. Ready to ship in 24 - 48hrs.* *The delivery times indicated correspond to the average time until the ordered goods are dispatched.

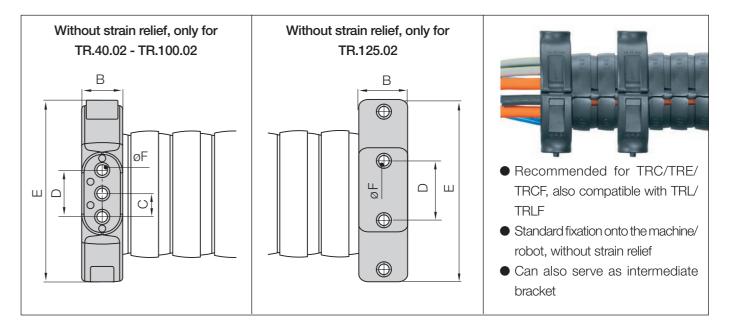
Flip open, insert cable,

mechanism then ready to run!

Standard mounting brackets with strain relief



Standard mounting brackets | With strain relief


TR.100.01

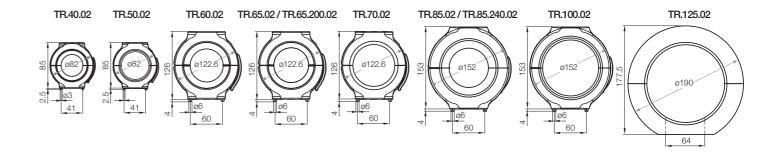
Ø		Part No.	Α	В	С	D	Е	F
Index		with strain relief	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
30.		Alternative: light mounting bracket	-	_	_	_	-	_
40.		TR.40.01.M6 1) 2)	17.8	21	13.5	27	84.5	6.5
50.		TR.50.01.M6 ¹⁾	21	21	13.5	27	84.5	6.5
60.		TR.60.01.M8 1) 2)	25	32	20	40	126	9
65.		TR.65.01.M8 1)	25	32	20	40	126	9
65. (R 200)		TR.65.200.01.M8 ^{1) 4) 5)}	25	32	20	40	126	9
70.		TR.70.01.M8 1) 2)	25	32	20	40	126	9
85.		TR.85.01.M8 ¹⁾	38	35	20	40	155	9
85. (R 240)		TR.85.240.01.M8 ^{1) 4)}	38	35	20	40	155	9
100.		TR.100.01.M8 ¹⁾	38	35	20	40	155	9
125.		Alternative: standard mounting bracket without strain relief						
Strain reliefs	are f	or use on the fixed end and/or moving end.						
Standard: th	roug	h holes in \emptyset F - 1) option: with threaded bushings, steel, M	16/M8					
2) 📤 Availab	ole as	s ESD version from stock						
4) Only avail	able	for special size with increased bend radius						
5) Available	upon	request. Please consult igus® for delivery time.						

triflex® R accessories

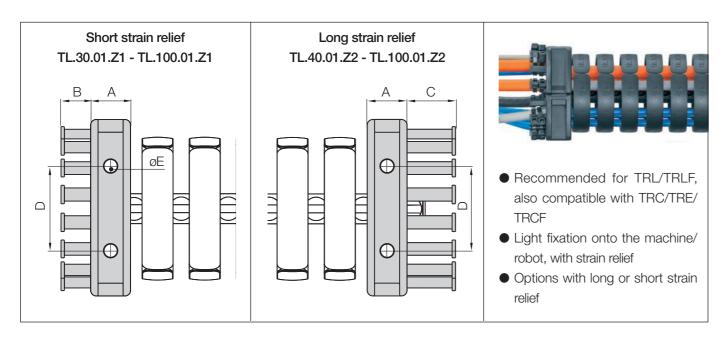
Standard mounting brackets without strain relief

Standard mounting brackets | Without strain relief

TR.125.02


Ø		Part No. without strain relief	Α	В	С	D	Е	F
Index		or as intermediate bracket	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
30.		Alternative: light mounting bracket	_	_	_	_	_	
40.		TR.40.02.M6 ¹⁾	_	21	13.5	27	84.5	6.5
50.		TR.50.02.M6 ¹⁾	_	21	13.5	27	84.5	6.5
60.		TR.60.02.M8 ¹⁾	_	32	20	40	126	9
65.		TR.65.02.M8 ¹⁾	_	32	20	40	126	9
65. (R 200)		TR.65.200.02.M8 1) 4) 5)	_	32	20	40	126	9
70.		TR.70.02.M8 ¹⁾	_	32	20	40	126	9
85.		TR.85.02.M8 ¹⁾	_	35	20	40	155	9
85. (R 240)		TR.85.240.02.M8 1) 4)	_	35	20	40	155	9
100.		TR.100.02.M8 ¹⁾	_	35	20	40	155	9
125.		TR.125.02.M8 ¹⁾	_	40	_	64	190	9

Standard: through holes in Ø F - 1) option: with threaded bushings, steel, M6/M8

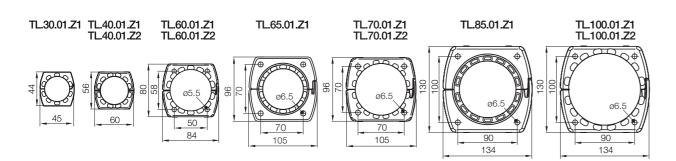

2) Available as ESD version from stock

4) Only available for special size with increased bend radius

5) Available upon request. Please consult igus® for delivery time.

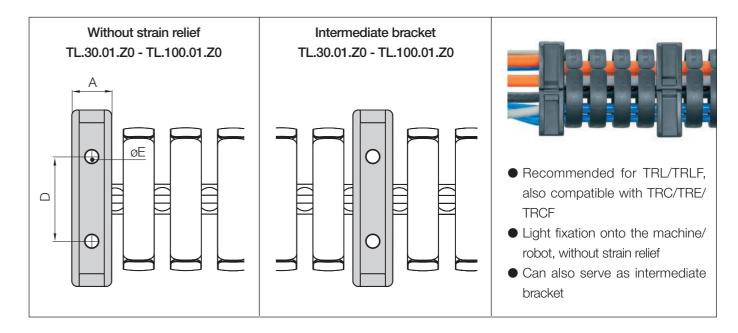
Light mounting brackets with strain relief

Light mounting brackets | With strain relief



TL.30.01.Z1 -TL.100.01.Z1

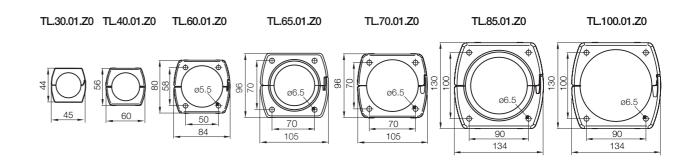
TL.40.01.Z2 -TL.100.01.Z2


Ø		Part No. with short	Part No. with long	Α	В	C	D	E
Index		strain relief	strain relief	[mm]	[mm]	[mm]	[mm]	[mm]
30.		TL.30.01.Z1	_	13	12.5	-	24	4.5
40.		TL.40.01.Z1 1)	TL.40.01.Z2	14	12.5	20	36	5.8
50.		Alternative: standard mounting	g bracket	_	_	_	_	_
60.		TL.60.01.Z1 1)	TL.60.01.Z2	20	17	27	48	5.8
65.		TL.65.01.Z1 1)	_	27	13.5	_	64	6.5
65. (R 20	(0)	Alternative: standard mounting	g bracket	_	-	_	_	_
70.	•	TL.70.01.Z1 1)	TL.70.01.Z2	27	17.5	27.5	64	6.5
85.	•	TL.85.01.Z1	_	30	26.5	_	64	6.5
85. (R 24	(O)	Alternative: standard mounting	g bracket	_	-	-	_	_
100.		TL.100.01.Z1 1)	TL.100.01.Z2	30	22.5	42.5	64	6.5
125.		Alternative: standard mounting	a bracket	_	_	_	_	_

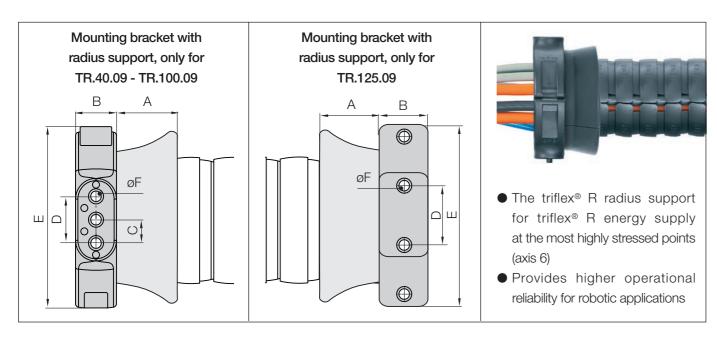
1) For moving end (ball) suitable only for series TRL/TRLF

triflex® R accessories

Light mounting brackets without strain relief



Light mounting brackets | Without strain relief

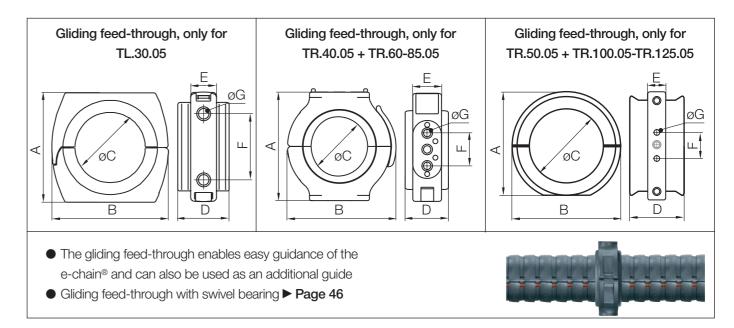


TL.30.01.Z0 -TL.100.01.Z0

Ø		Part No. without strain relief	Α	В	С	D	Е
Index		or as intermediate bracket	[mm]	[mm]	[mm]	[mm]	[mm]
30.		TL.30.01.Z0	13	_	_	24	4.5
40.		TL.40.01.Z0	14	_	_	36	5.8
50.		Alternative: standard mounting bracket	_	_	_	_	_
60.		TL.60.01.Z0	20	_	_	48	5.8
65.		TL.65.01.Z0	27	_	_	64	6.5
65. (R 200)		Alternative: standard mounting bracket	_	_	_	_	_
70.		TL.70.01.Z0	27	_	_	64	6.5
85.		TL.85.01.Z0	30	_	_	64	6.5
85. (R 240)		Alternative: standard mounting bracket	_	_	_	_	_
100.		TL.100.01.Z0	30	_	_	64	6.5
125.		Alternative: standard mounting bracket	_	_	_	_	_

Mounting brackets with radius support

Mounting brackets | With radius support | For TRC-TRE-TRCF-TRL-TRLF


TR.40.09 -TR.100.09

Ø		Part No. with	А	В	C	D	E	F	
Index		radius support	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	
30.		_	_	_	_	_	_	_	
40.		TR.40.09.M6 ¹⁾	28	21	13.5	27	84.5	6.5	
50.		TR.50.09.M6 ¹⁾	38	21	13.5	27	84.5	6.5	
60.		TR.60.09.M8 ¹⁾	38	32	20	40	126	9	
65.		TR.65.09.M8 ¹⁾	45	32	20	40	126	9	
65. (R 2 0	00) >	_	_	_	_	_	_	_	
70.		TR.70.09.M8 ¹⁾	43	32	20	40	126	9	
85.		TR.85.09.M8 ¹⁾	49	35	20	40	155	9	
85. (R 2 4	40)	_	_	_	_	_	_	_	
100.	•	TR.100.09.M8 ¹⁾	67	35	20	40	155	9	
125.		TR.125.09.M8 ¹⁾	72	40	_	64	190	9	

triflex® R accessories

Gliding feed-throughs

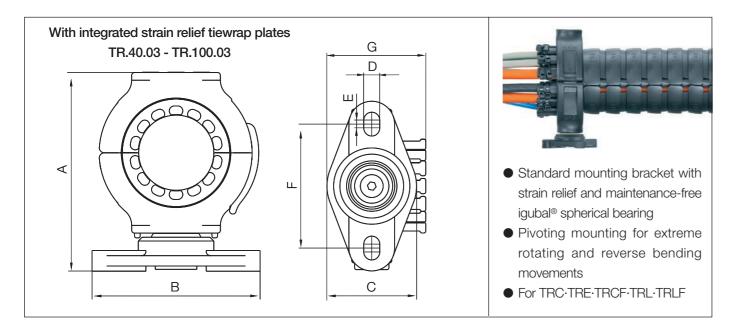
Gliding feed-through | For TRC·TRE·TRCF

*TR.100.05 with 3 holes

Standard: Through hole with Ø G

1) Option: With threaded steel bushing, M6/M8

TR.40.05 + TR.60-85.05


TR.50.05 + TR.100.05 -

Ø	Part No.	Α	В	С	D	Е	F	G
Index	gliding feed-through	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
30.	TL.30.05	56	60	36	28	14	36	5.8
40.	TR.40.05.M6 1)	85	84.5	46	32	21	27	6.5
50.	TR.50.05.M6 1)	96	102	58	67	21	27	6.5
60.	TR.60.05.M8 1)	126	126	70	50	32	40	9
65.	TR.65.05.M8 1)	126	126	75	75	32	40	9
65. (R 200)	TR.65.05.M8 1)	126	126	75	75	32	40	9
70.	TR.70.05.M8 1)	153	155	86	70	35	40	9
85.	TR.85.05.M8 1)	153	155	100	84	35	40	9
85. (R 240)	TR.85.05.M8 1)	153	155	100	84	35	40	9
100.	TR.100.05.M8 1) *	162.5	169.5	115	85	28	40	8.5
125.	TR.125.05.M8 1)	179	190	142	84	40	64	9

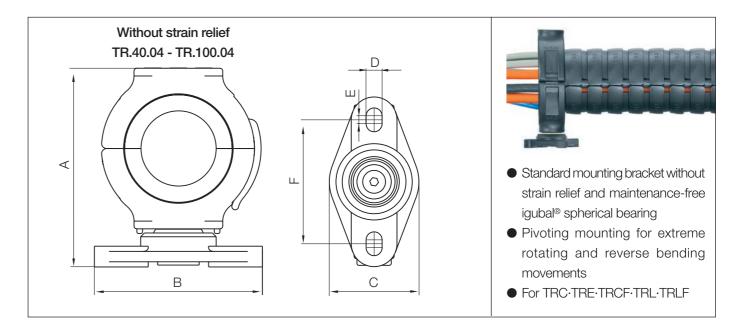
Standard: Through hole with Ø F

1) Option: With threaded steel bushing, M6/M8

Swivel bearing mounting brackets with strain relief

Swivel bearing-mounting brackets | With strain relief | For TRC·TRE·TRCF·TRL·TRLF

TR.40.03 -TR.100.03


Ø	Part No.	Α	В	С	D	Ε	F	G
Index	with strain relief	[mm]						
30.	_	_	_	_	_	_	_	_
40.	TR.40.03	105	89	47	8.4	4.1	65	51.8
50.	TR.50.03	105	89	47	8.4	4.1	65	55
60.	TR.60.03	152	118	65	10.5	5.5	87.5	73.5
65.	TR.65.03	152	118	65	10.5	5.5	87.5	73.5
65. (R 200) ▶	TR.65.200.03 ^{4) 5)}	152	118	65	10.5	5.5	87.5	73.5
70.	TR.70.03	152	118	65	10.5	5.5	87.5	73.5
85.	TR.85.03	179	118	65	10.5	5.5	87.5	88
85. (R 240)	TR.85.240.03 ⁴⁾	179	118	65	10.5	5.5	87.5	88
100.	TR.100.03	179	118	65	10.5	5.5	87.5	88
125.	_	_	_	_	_	_	_	_

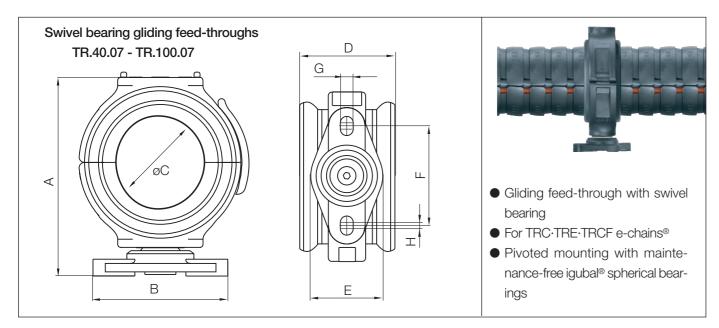
4) Only available for special size with increased bend radius

5) Available upon request. Please consult igus® for delivery time.

triflex® R accessories

Swivel bearing-mounting bracket without strain relief

Swivel bearing mounting brackets | Without strain relief | For TRC·TRE·TRCF·TRL·TRLF


TR.40.04 -TR.100.04

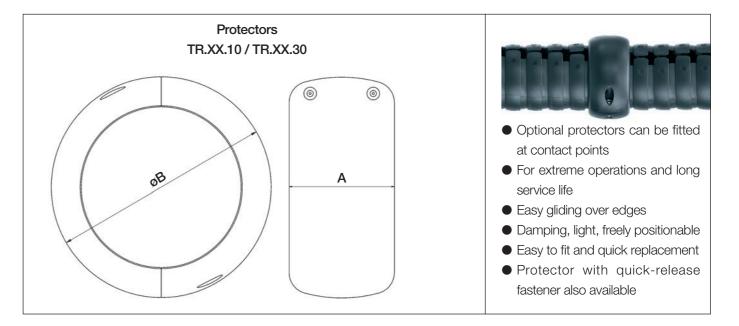
Ø	Part No.	Α	В	С	D	Ε	F	G
Index	without strain relief	[mm]						
30.	_	_	_	_	_	_	_	
40.	TR.40.04	105	89	47	8.4	4.1	65	_
50.	TR.50.04	105	89	47	8.4	4.1	65	_
60.	TR.60.04	152	118	65	10.5	5.5	87.5	_
65.	TR.65.04	152	118	65	10.5	5.5	87.5	_
65. (R 200) ▶	TR.65.200.04 4) 5)	152	118	65	10.5	5.5	87.5	_
70.	TR.70.04	179	118	65	10.5	5.5	87.5	_
85.	TR.85.04	179	118	65	10.5	5.5	87.5	_
85. (R 240)	TR.85.240.04 ⁴⁾	179	118	65	10.5	5.5	87.5	_
100.	TR.100.04	_	_	_	_	_	_	_
125.	-							

4) Only available for special size with increased bend radius

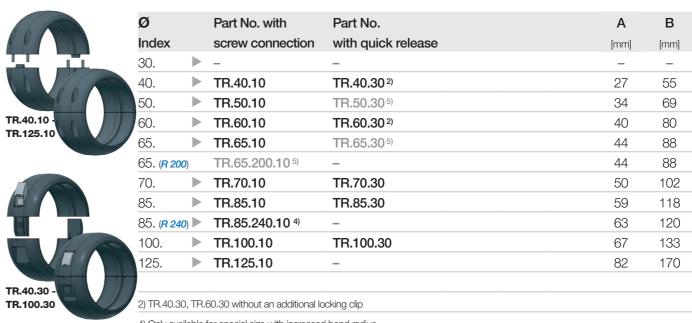
5) Available upon request. Please consult igus® for delivery time.

Swivel bearing gliding feed-throughs

Swivel bearing gliding feed-throughs | For TRC·TRE·TRCF

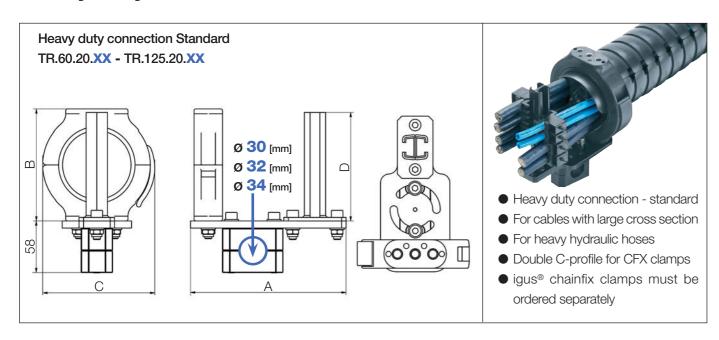


TR.40.07 -TR.100.07


Ø	Part No.	Α	В	С	D	Ε	F	G
Index	with swivel bearing	[mm]						
30.	_	_	-	-	_	_	_	-
40.	TR.40.07	108	89	46	32	47	65	8.4
50.	TR.50.07	119	89	58	67	47	65	8.4
60.	TR.60.07	156	118	70	50	65	87.5	10.5
65.	TR.65.07	156	118	75	75	65	87.5	10.5
65. (R 200)	TR.65.07	156	118	75	75	65	87.5	10.5
70.	TR.70.07	183	118	86	70	65	87.5	10.5
85.	TR.85.07	183	118	100	84	65	87.5	10.5
85. (R 240)	TR.85.07	183	118	100	84	65	87.5	10.5
100.	TR.100.07	189	118	115	85	79	87.5	10.5
125.	_	_	-	-	_	-	-	-

triflex® R accessories

Protectors


Protectors | For TRC·TRE·TRCF

4) Only available for special size with increased bend radius

5) Available upon request. Please consult igus $^{\!\scriptscriptstyle (\! g \!)}$ for delivery time.

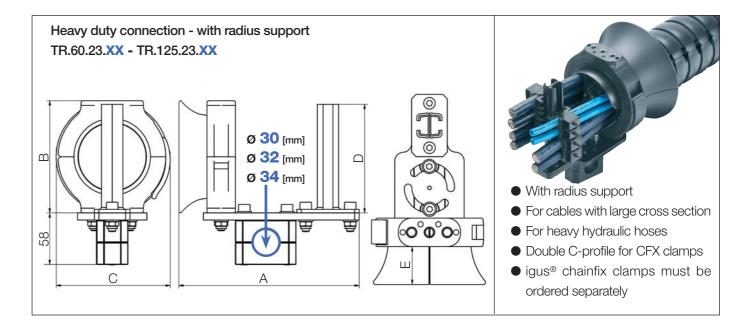
Heavy duty connections, for axis 6

Heavy duty connections | For TRC·TRE·TRCF

TR.125.20.XX

Ø		Part No.	Clamp	Α	В	С	D	Е
Index		standard	Ø [mm]	[mm]	[mm]	[mm]	[mm]	[mm]
30.	•	_	_	_	_	_	_	_
40.		_	_	_	_	_	_	_
50.		_	_	_	_	_	_	_
60.	•	TR.60.20.	30 32 34	175	126	126	122	_
65.	•	TR.65.20.	30 32 34	175	126	126	122	_
65. (R 20	00)	TR.65.200.20. 4) 05)	30 32 34	175	126	126	122	_
70.	•	TR.70.20.	30 32 34	175	126	126	122	_
85.	•	TR.85.20.	30 32 34	175	153	155	149	_
85. (R 2	40)	TR.85.240.20.4)	30 32 34	175	153	155	149	_
100.	>	TR.100.20.	30 32 34	175	153	155	149	_
125.		TR.125.20.	30 32 34	180	190	190	175	_

Standard clamp for axis 6: ø 30mm


4) Only available for special size with increased bend radius

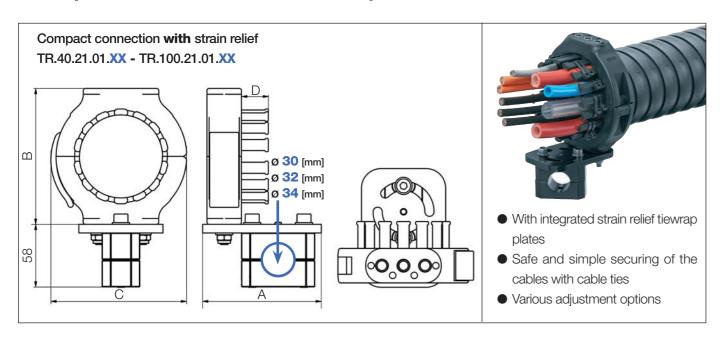
5) Available upon request. Please consult igus® for delivery time.

Part No. with desired diameter for the axis 6 clamp | 30 | 32 | 34 | e.g. TR.100.20.30

triflex® R accessories

Heavy duty connections for axis 6 with radius support

Heavy duty connections | With radius support | For TRC-TRE-TRCF


TR.60.23.XX -TR.125.23.XX

Ø		Part No. with	Clamp	Α	В	С	D	Е
Index		radius support	Ø [mm]	[mm]	[mm]	[mm]	[mm]	[mm]
30.		_	_	_	_	_	_	_
40.		_	_	_	_	_	_	_
50.		_	_	_	_	_	_	_
60.		TR.60.23.	30 32 34	209	126	130	122	38
65.		TR.65.23.	30 32 34	214	126	130	122	45
65. (R 20	O)	_	_	_	_	_	_	_
70.		TR.70.23.	30 32 34	214	126	130	122	43
85.		TR.85.23.	30 32 34	222	155	155	149	49
85. (R 24	0)	_	_	_	155	_	149	_
100.		TR.100.23.	30 32 34	240	155	155	149	67
125.		TR.125.23.	30 32 34	252	190	190	175	72

Standard clamp for axis 6: ø 30mm

Part No. with desired diameter for the axis 6 clamp | 30 | 32 | 34 | e.g. TR.100.23.30

Compact connections for clamp axis 6

Compact connections | With strain relief | For TRC·TRE·TRCF

5) Available upon request. Please consult igus® for delivery time.

TR.40.21.01.XX -TR.100.21.01.XX

Ø	Part No.	Clamp	Α	В	С	D
Index	with strain relief	Ø [mm]	[mm]	[mm]	[mm]	[mm]
30.	_	_	_	_	_	-
40.	TR.40.21.01.	30 32 34	110	85	84.5	17.8
50.	TR.50.21.01.	30 32 34	110	85	84.5	21
60.	TR.60.21.01.	30 32 34	110	126	126	25
65.	TR.65.21.01.	30 32 34	110	126	126	25
65. (R 200)	TR.65.200.21.01. 4) 5)	30 32 34	110	126	126	25
70.	TR.70.21.01.	30 32 34	110	126	126	25
85.	TR.85.21.01.	30 32 34	110	153	155	38
85. (R 240)	TR.85.240.21.01.4)	30 32 34	110	153	155	38
100.	TR.100.21.01.	30 32 34	110	153	155	38
125.	_	_	_	_	_	-
Standard clamp t	for axis 6: ø 30mm					
4) Only available	for special size with increased	bend radius				

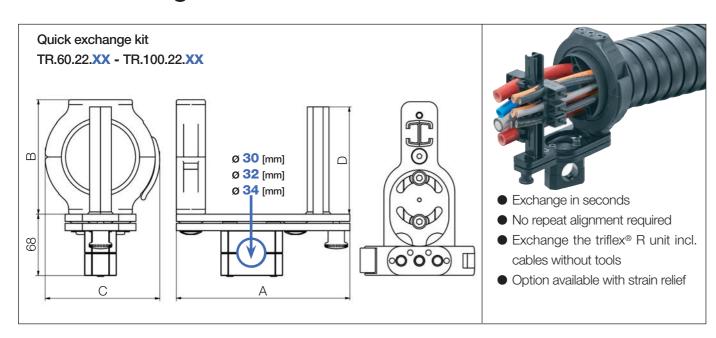
Part No. with desired diameter for the axis 6 clamp | 30 | 32 | 34 | e.g. TR.100.21.30

triflex® R accessories

Compact connections for clamp axis 6

Clamp

Compact connections | Without strain relief | For TRC·TRE·TRCF



TR.40.21.02.XX -TR.100.21.02.XX

~			· · · · · · · · · · · · · · · · · · ·		_	_	_
Index		without strain relief	Ø [mm]	[mm]	[mm]	[mm]	[mm]
30.		_	_	_	_	_	_
40.		TR.40.21.02.	30 32 34	110	85	84.5	_
50.		TR.50.21.02.	30 32 34	110	85	84.5	_
60.		TR.60.21.02.	30 32 34	110	126	126	_
65.		TR.65.21.02.	30 32 34	110	126	126	_
65. (R 200)		TR.65.200.21.02. 4) 5)	30 32 34	110	126	126	_
70.		TR.70.21.02.	30 32 34	110	126	126	_
85.		TR.85.21.02.	30 32 34	110	153	155	_
85. (R 240)		TR.85.240.21.02.4)	30 32 34	110	153	155	_
100.		TR.100.21.02.	30 32 34	110	153	155	_
125.		_	_	_	_	_	_
Standard cla	amp t	for axis 6: ø 30mm					
4) Only availa	able t	for special size with increased	bend radius				
5) Available (noqu	request. Please consult igus®	for delivery time.				

Part No. with desired diameter for the axis 6 clamp | 30 | 32 | 34 | e.g. TR.100.21.02.30

Quick exchange kit for axis 6

Quick exchange kit | For TRC·TRE·TRCF

TR.100.22.XX

Ø		Part No. quick-	Clamp	Α	В	С	D
Index		change unit	Ø [mm]	[mm]	[mm]	[mm]	[mm]
30.		_	_	_	_	_	
40.		_	_	_	_	_	_
50.		_	_	_	_	_	_
60.		TR.60.22.	30 32 34	191	126	126	126
65.		TR.65.22.	30 32 34	191	126	126	126
65. (R 200)		TR.65.200.22. 4) 5)	30 32 34	191	126	126	126
70.		TR.70.22.	30 32 34	191	126	126	126
85.		TR.85.22.	30 32 34	191	153	155	153
85. (R 240)		TR.85.240.22.4)	30 32 34	191	153	155	153
100.		TR.100.22.	30 32 34	191	153	155	153
125.		_	_	_	<u>-</u>	<u>-</u>	_

Standard clamp for axis 6: ø 30mm

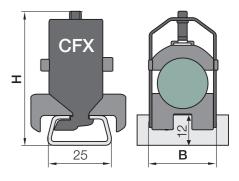
4) Only available for special size with increased bend radius

5) Available upon request. Please consult igus® for delivery time.

Part No. with desired diameter for the axis 6 clamp | 30 | 32 | 34 | e.g. TR.100.22.30

triflex® R accessories

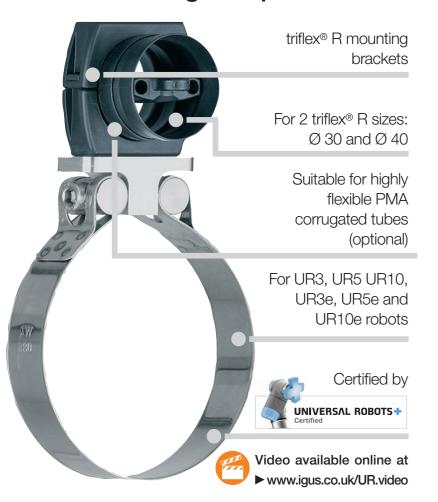
chainfix clamps


chainfix | Single clamp incl. bottom saddles

- For use with heavy-duty connection TR.XX.20 / TR.XX.23 and quick release
- Reliably absorbs tensile forces even for larger cable diameters
- Specifically recommended for solid welding cables and rigid hydraulic hoses
- Space- and time-saving assembly onto the C-profile
- Simple assembly with hex head set screw
- High strength for dynamic applications with improved stacker elements
- Built-in ribs on the stacker elements give secure grip on the cables
- Steel (material galvanised steel) or stainless steel (material 1.4301/AISI 304) available

Part No.	Part No. stain-	≤Ø	B+2	Н
steel	less steel*	[mm]	[mm]	[mm
CFX12.1	CFX12.1.E	06 - 12	16	54
CFX14.1	CFX14.1.E	12 - 14	18	50
CFX16.1	CFX16.1.E	14 - 16	20	52
CFX18.1	CFX18.1.E	16 - 18	22	54
CFX20.1	CFX20.1.E	18 - 20	24	56

Part No.	Part No. stain-	≤Ø	B+2	Н				
steel	less steel*	[mm]	[mm]	[mm]				
CFX22.1	CFX22.1.E	20 - 22	26	58				
CFX26.1	CFX26.1.E	22 - 26	30	67				
CFX30.1	CFX30.1.E	26 - 30	34	71				
CFX34.1	CFX34.1.E	30 - 34	38	75				
*Stainless steel material: 1.4301/AISI 304								



Individual strain relief for every cable offers security and easy replacement

UR mounting clamps

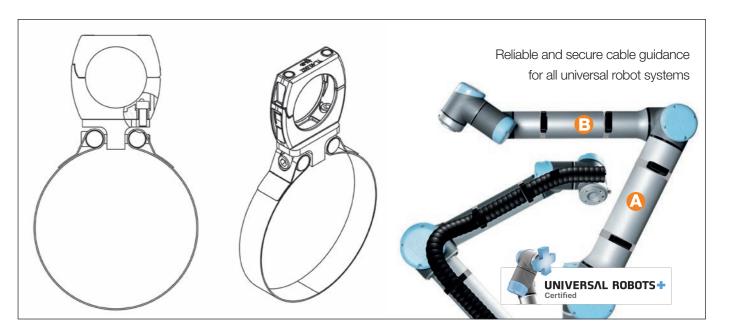
Mounting clamps for "Universal Robots" -**UR** brackets

The "Universal Robots" company makes easy-to-use, lightweight robot systems. The triflex® R 30 and 40 sizes are a perfect fit for the UR3, UR5 and UR10 robot systems, both technically and visually. Connecting the system is quick and easy when using the UR brackets.

- Safe cable guidance with triflex® R for "universal robots"
- Easy connection with screw clips
- For UR3, UR5 and UR10 robots
- For TRC, TRE, TRL: Ø 30 and Ø 40mm
- Suitable for PMA corrugated tube I-PIST-29B (optional)

Overview triflex® R e-chains® | For TRC·TRE·TRL

Principle	Part No.	Bi1	Bi2	Ba	R	d1	d2	Pitch	Links
sketch	series	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	per m
	Series TRC - enclo	sed design	1						
d1 Bi 1	TRC.30.050.0	12	10	34.5	050	10	8	11.3	89
d2 Bi2	TRC.40.058.0	15	13	43	058	13	11	13.9	72
	Series TRE - "easy	" design							
	TRE.30.050.0	12	10	34.5	050	10	8	11.3	89
d2 Bi2	TRE.40.058.0.B	15	13	43	058	13	11	13.9	72
	Series TRL - light v	ersion of th	ne "easy"	-design					
d1 d1	TRL.30.050.0	12.5	11	34.5	050	10	8	11.3	89
d1 Ba Bi	TRL.40.058.0	15	_	45	058	13	_	13.9	72


PMA hoses overview | For PMAFLEX corrugated tubes

1 11/1/ 11100000	70.7.01	1 01 1 111/1/11		ragatoa	Laboo			
Principle	Part No.	Corrugated tube	Metric	Inner Ø	Outer Ø	Static	Dynamic	VE
sketch	series	nominal width	size [mm]	d1 [mm]	d2 [mm]	R [mm]*	R [mm]**	[mm]
	I-PIST-29B	29	32	29.0	34.3	45	110	50

*Static R = minimum recommended bend radius for static (fixed) installation **Dynamic R = minimum recommended bend radius for dynamic (flexible) laying

Product range

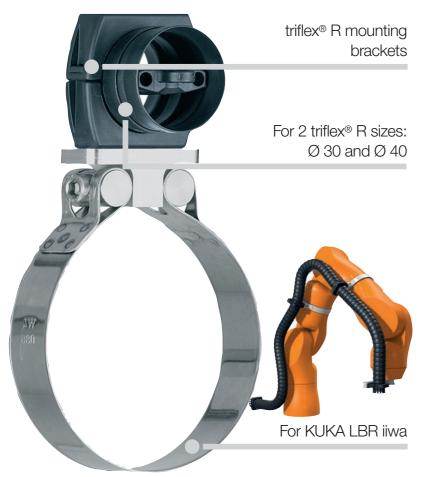
UR mounting clamps

Product range | Suitable for TRC.30 · TRE.30 · TRL.30 e-chains®

Part No.	Part No.	For UR-	Ø	Position
without strain relief	with strain relief	robot system	[mm]	
TR.911.965.054.Z0	TR.911.965.054.Z1	UR3 / UR3e	054	В
TR.911.965.066.Z0	TR.911.965.066.Z1	UR3 / UR3e	066	A
TR.911.965.075.Z0	TR.911.965.075.Z1	UR5 / UR5e	075	В
TR.911.965.086.Z0	TR.911.965.086.Z1	UR5 / UR5e	086	A
TR.911.965.086.Z0	TR.911.965.086.Z1	UR10 / UR10e	086	В
TR.911.965.108.Z0	TR.911.965.108.Z1	UR10 / UR10e	108	A

Product range | Suitable for TRC.40 · TRE.40 · TRL.40 e-chains®

Part No.	Part No.	For UR-	Ø	Position
without strain relief	with strain relief	robot system	[mm]	
TR.911.966.054.Z0	TR.911.966.054.Z1	UR3 / UR3e	054	В
TR.911.966.066.Z0	TR.911.966.066.Z1	UR3 / UR3e	066	A
TR.911.966.075.Z0	TR.911.966.075.Z1	UR5 / UR5e	075	В
TR.911.966.086.Z0	TR.911.966.086.Z1	UR5 / UR5e	086	A
TR.911.966.086.Z0	TR.911.966.086.Z1	UR10 / UR10e	086	В
TR.911.966.108.Z0	TR.911.966.108.Z1	UR10 / UR10e	108	A


Product range | Suitable for PMA hose I-PIST-29B (optional)

ı		(0	Je 4: 0 : 101./	
	Part No.	For UR-	Ø	Position
	without strain relief	robot system	[mm]	
	TR.914.836.054.Z0	UR3 / UR3e	054	В
	TR.914.836.066.Z0	UR3 / UR3e	066	A
	TR.914.836.075.Z0	UR5 / UR5e	075	В
	TR.914.836.086.Z0	UR5 / UR5e	086	A
	TR.914.836.086.Z0	UR10 / UR10e	086	В
	TR.914.836.108.Z0	UR10 / UR10e	108	A

Mounting clamps for KUKA LBR iiwa

Mounting clamp for KUKA LBR iiwa

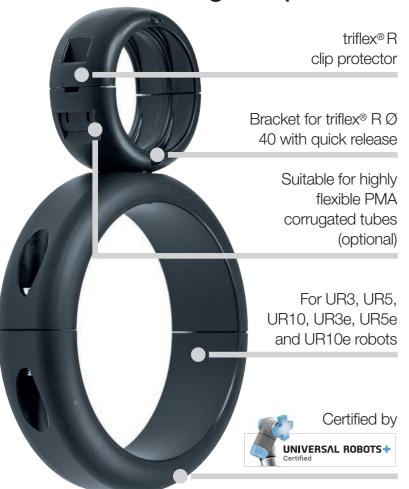
- Safe cable guidance with triflex® R for KUKA LBR iiwa robots
- For KUKA LBR iiwa 14 R820 and KUKA LBR iiwa 7 R800
- Easy connection with screw clips
- For 2 triflex® R sizes: Ø 30 and Ø 40
- For TRC, TRE and TRL e-chains®

Overview triflex® R e-chains® | For TRC-TRE-TRL

Principle	Part No.	Bi1	Bi2	Ba	R	d1	d2	Pitch	Links					
sketch	series	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	per m					
	Series TRC - enclo	Series TRC - enclosed design												
	TRC.30.050.0	12	10	34.5	050	10	8	11.3	89					
d2 Bi2	TRC.40.058.0	15	13	43	058	13	11	13.9	72					
	SeriesTRE - "easy"	design												
d1 Ba7	TRE.30.050.0	12	10	34.5	050	10	8	11.3	89					
d2 Bi2	TRE.40.058.0.B	15	13	43	058	13	11	13.9	72					
d1 d1 d1 d1 ga gs	Series TRL - light v	ersion of th	ne "easy"·	-design										
	TRL.30.050.0	12.5	11	34.5	050	10	8	11.3	89					
	TRL.40.058.0	15	_	45	058	13	_	13.9	72					

Product range

Mounting clamps for KUKA LBR iiwa


Product range | Suitable for TRC.30 · TRE.30 · TRL.30 e-chains®

Part No.	Part No.	For KUKA	Ø	
without strain relief	with strain relief	LBR iiwa	[mm]	
TR.914.951.Z0	TR.914.951.Z1	LBR iiwa 14 R820 LBR iiwa 7 R800	136	

Product range | Suitable for TRC.40 · TRE.40 · TRL.40 e-chains®

Part No.	Part No.	For KUKA	Ø
without strain relief	with strain relief	LBR iiwa	[mm]
TR.914.952.Z0	TR.914.952.Z1	LBR iiwa 14 R820 LBR iiwa 7 R800	136

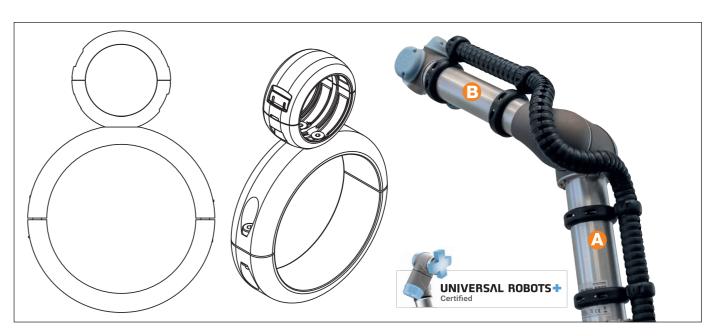
Cobot mounting clamps New

Mounting clamp for robot arms with "cobot" design - HRC clamps

Energy supply made easy for cobots. Reliable multi-axis energy supply thanks to the mounting clamp for our robotic triflex® R e-chains®.

- Plastic clamp
- Simple screw connection for attachment to the robot arm
- Bracket for triflex® R Ø 40 with quick release
- Rounded cobot style design
- For TRC, TRE and TRL e-chains®
- For UR and URe robot arms

Overview triflex® R e-chains® | For TRC·TRE·TRL


Principle	Part No.	Bi1	Bi2	Ва	R	d1	d2	Pitch	Links	
sketch	series	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	per m	
	Series TRC - enclo	sed desigr	า							
	TRC.40.058.0	15	13	43	058	13	11	13.9	72	
d2 Bi2										
	Series TRE - "easy" design									
d1 Bi1	TRE.40.058.0.B	15	13	43	058	13	11	13.9	72	
d2 Bi2										
d1 d1	Series TRL - light v	ersion of t	he "easy"-	design						
	TRL.40.058.0	15	_	45	058	13	_	13.9	72	
d1 Ba Bi										

PMA hoses overview | For PMAFLEX corrugated tubes

I IVIA HOSES C	ACI AICAN	I OI I IVIAI	LL/ COI	rugateu	lubes			
Principle	Part No.	Corrugated tube	Metric	Inner Ø	Outer Ø	Static	Dynamic	VE
sketch	series	nominal width	size [mm]	d1 [mm]	d2 [mm]	R [mm]*	R [mm]**	[mm]
	I-PIST-29B	29	32	29.0	34.3	45	110	50

*Static R = minimum recommended bend radius for static (fixed) installation **Dynamic R = minimum recommended bend radius for dynamic (flexible) laying

Product range Cobot mounting clamps

Product range | Suitable for TRC.40 · TRE.40 · TRL.40 e-chains®

Part number cobot	For UR-	UR Ø	URe Ø	Position
mounting clamps	robot system	[mm]	[mm]	
TR.916.810.54	UR3 / UR3e	054	054	В
TR.916.810.66	UR3 / UR3e	066	066	A
TR.916.810.75	UR5 / UR5e	075	075	В
TR.916.810.86	UR5 / UR5e	086	086	A
TR.916.810.86	UR10 / UR10e	086	086	В
TR.916.810.108	UR10	108	_	A
TR.916.810.110	UR10e	_	110	Α

Product range | Suitable for PMA hose I-PIST-29B (optional)

For PMA hose	Part number cobot	For UR-	UR Ø	URe Ø	Position
I-PIST-29B	mounting clamps	robot system	[mm]	[mm]	
	TR.916.810.54	UR3 / UR3e	054	054	В
	TR.916.810.66	UR3 / UR3e	066	066	A
	TR.916.810.75	UR5 / UR5e	075	075	В
	TR.916.810.86	UR5 / UR5e	086	086	A
	TR.916.810.86	UR10 / UR10e	086	086	В
	TR.916.810.108	UR10	108	_	A
	TR.916.810.110	UR10e	_	110	A

59

Protective jackets

Standard protective jacket

- ◆ Plastic coated fabric ◆ Easy to replace with Velcro fastenings
- Elastic sealing strips Standard lengths available from stock
- For paint or sealing applications PVC material

Ø	Part No.	Standard lengths*
Index	jacket	XXXX [mm]
30.	_	_
40.	TR.40.14.	500 1000 1500 2000
50.	TR.50.14.	500 1000 1500 2000
60.	TR.60.14.	500 1000 1500 2000
65. ▶	TR.65.14.	500 1000 1500 2000
70.	TR.70.14.	500 1000 1500 2000
85.	TR.85.14.	500 1000 1500 2000
100.	TR.100.14.	500 1000 1500 2000
125.	TR.125.14.	500 1000 1500 2000

*Special lengths upon request

Part No. with the desired standard value for the length XXXX Example: TR.60.14.500

Heat shield protective jacket

- Made from heat-resistant, wear-resistant Kevlar Short-term protection against welding and metal spatter, temperatures up to +540°C ● High abrasion resistance ● Sealed design
- For tough environments
 Easy to replace or retrofit with zipper closure ● Velcro straps at each end ● Tough design ● Silicone-free ● Asbestos-free ● Standard lengths from stock

Ø	Part No.	Standard lengths*		
Index	jacket	XXXX [mm]		
30.	_	_		
40.	TR.40.18.	500 1000 1500 2000		
50.	TR.50.18.	500 1000 1500 2000		
60.	TR.60.18.	500 1000 1500 2000		
65.	TR.65.18.	500 1000 1500 2000		
70.	TR.70.18.	500 1000 1500 2000		
85.	TR.85.18.	500 1000 1500 2000		
100.	TR.100.18.	500 1000 1500 2000		
125.	TR.125.18.	500 1000 1500 2000		
*0 : !!				

*Special lengths upon request

Part No. with the desired standard value for the length XXXX Example: TR.60.18.500

Wear resistant protective jacket

- Extremely high abrasion resistance
 Black leather
 For use in temperatures from -40°C to +100°C ● Very flexible ● Easy to exchange or retrofit ● Silicone-free ● Asbestos-free
- Standard lengths from stock

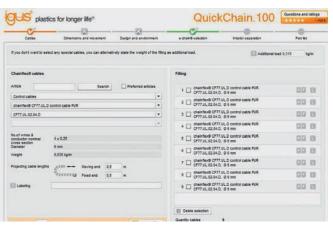
Ø	Part No.	Standard lengths*		
Index	jacket	XXXX [mm]		
30.	_	_		
40.	TR.40.19.	500 1000 1500 2000		
50.	TR.50.19.	500 1000 1500 2000		
60.	TR.60.19.	500 1000 1500 2000		
65.	TR.65.19.	500 1000 1500 2000		
70.	TR.70.19.	500 1000 1500 2000		
85.	TR.85.19.	500 1000 1500 2000		
100.	TR.100.19.	500 1000 1500 2000		
125. ▶	TR.125.19.	500 1000 1500 2000		

*Special lengths upon request

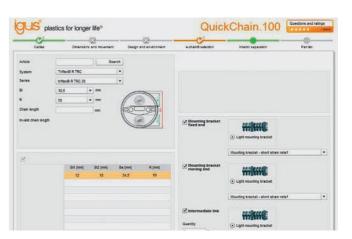
Part No. with the desired standard value for the length XXXX

Example: TR.60.19.500

triflex® R filling

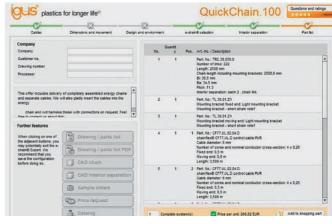

interior separation configurator

triflex® R interior separation - configure e-chains® easily


Quick and easy creation of interior separation layouts for triflex® R. After selecting the cables, they can be dragged & dropped into the e-chain® layout. The interior separation configurator creates a parts list of the e-chain® and the cables contained in the configuration. The configurations can be saved and reloaded. The entire configuration can be transferred to the shopping cart with a click.

- Quick and easy interior separation configurator
- Accounts for the maximum filling rules for cables and hoses
- Creation of parts lists
- Easy enquiry and ordering

More information and interior separation configurator www.igus.co.uk/triflexR-IA


1. Select cables, hoses and lengths

2. Select e-chain® and size

3. Fill the e-chain® with cables and hoses

4. Result: parts list, price and drawings

triflex® R - readychain® dress-packs

Customised system consisting of the triflex® R, chainflex® and connectors

- Eliminate storage costs for cables, e-chains® and plugs
- Shorten turnaround times by half, minimise your machine downtime
- Reduce the number of suppliers and orders by 75%

More information ▶ www.readychain.co.uk

triflex® R retraction systems

For supplying energy to robots

Prevent loop formation on robots triflex® R retraction systems

The global growth in automation for industrial production is leading to more and more complex robotic applications. Target cycle times are getting shorter and downtime must also be reduced. To provide reliable protection against premature system failure and downtime, we recommend the use of a triflex® R e-chain®, especially to bridge the last three axes on robots. The length change that results from the robot's movement is compensated by our triflex® R retraction systems. This constantly guides the igus® e-chain® in a controlled way to prevent the formation of loops in the robot's working area.

5 triflex® R retraction system types available from stock:

RS Modular retraction system RSP Pneumatic retraction system

RSE Cost-effective retraction system with deflection

■ RSE linear Linear, space-saving retraction system RSEL Cost-effective linear retraction system

Typical industries and applications

 Machine tools ● Handling machines - 6-axis ● Conveyor systems ● Packaging machines ● General mechanical engineering, etc.

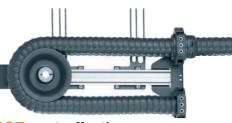
Available from stock. Ready to ship in 24 - 48hrs.*

*The delivery times indicated correspond to the average time until the ordered goods are dispatched.

triflex® R retraction systems System overview and advantages

RS modular retraction system ▶ from page 66

• Advantages:


- For use with adverse environmental influences
- Retraction force provided by integrated fibre-rods
- For robots with a load capacity from approx. 10kg
- Up to 670mm retraction length possible
- If a linear guide system is not needed
- For series TRC·TRE with ø-index 40-100mm

RSP pneumatic retraction system ▶ from page 74

• Advantages:

- Standard pneumatic components
- Sensor based monitoring possible
- For applications with a high fill weight
- Constant force over the complete travel
- For robots with a load capacity from approx. 50kg
- Up to 780mm retraction length possible
- For series TRC·TRE·TRCF with a ø-index of 60-125mm

RSE cost-effective retraction system with deflection ▶ from page 82

Advantages:

- For small robots, very light
- Up to 500mm retraction length possible
- For highly dynamic movements
- Cost-effective
- Maintenance-free igus® drylin® W linear unit
- For series TRC·TRE with ø-index 40-50mm

RSE linear space-saving retraction system ▶ from page 90

• Advantages:

- Special linear guide avoids small bend radii
- Simple, linear retraction without loops, fibre-rods or guide rollers
- Up to 490mm retraction length possible
- Space-saving
- Maintenance-free igus® drylin® W linear unit
- For series TRC·TRE·TRCF* with ø-index 40-100mm

RSEL linear, cost-effective retraction system ▶ from page 100

Advantages:

- Linear guidance even for highly dynamic applications
- For robots with high and medium payloads
- Up to 380mm retraction length possible
- Cost-effective
- For series TRC·TRE·TRCF with a ø-index of 70-85mm.

triflex® R retraction systems Choosing the right e-chain® size ...

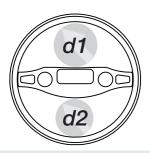
triflex® R retraction systems ... and selection of possible retraction systems

The largest cable diameter ø ...

1. chamber

d1 [mm]

< 15


< 18.8 < 22.5

< 28

< 33

< 37.5

< 43

2. chamber

d2 [mm]

< 13

< 16.2

< 19.5

_

< 24

< 28

< 32.5

< 43

... and max. usable e-chain® cross section area ...

Coverage of

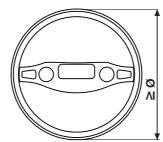
the entire area

< 500

< 750

< 1,000

< 1,750


< 2,500

< 3,000

< 4,500

... determine the necessary Ø index of the triflex® R ...

Ø index triflex® R e-chain®

30.

40.

50.

60.

65. 70.

85.

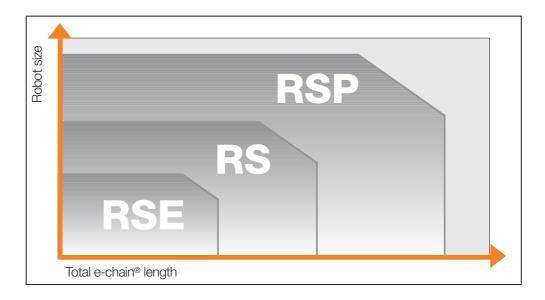
100.

125.

Ø A	
linimum	

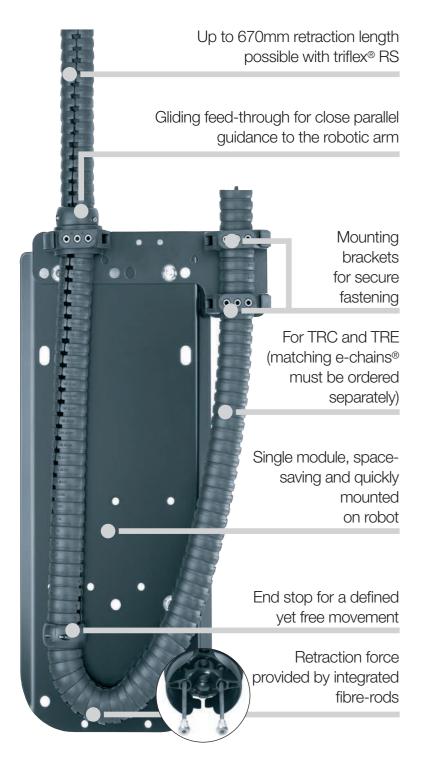
RS modular	RSP pneumatic	RSE with deflection	RSE linear space-saving	RSEL cost-effective
_	_	_	_	_
•	_	•	•	_
_	_	•	•	_
•	•	_	•	_
_	_	_	_	_
•	•	_	•	•
•	•	_	•	•
•	•	_	•	_
_	•	_	•	_
► Page 66	► Page 74	► Page 82	► Page 90	► Page 100

... select from 5 retraction systems options:


 \bullet = yes, it is possible - = it is not possible

If you want to select a suitable retraction system yourself, please ensure that you observe the maximum cable diameter and usage guidance!

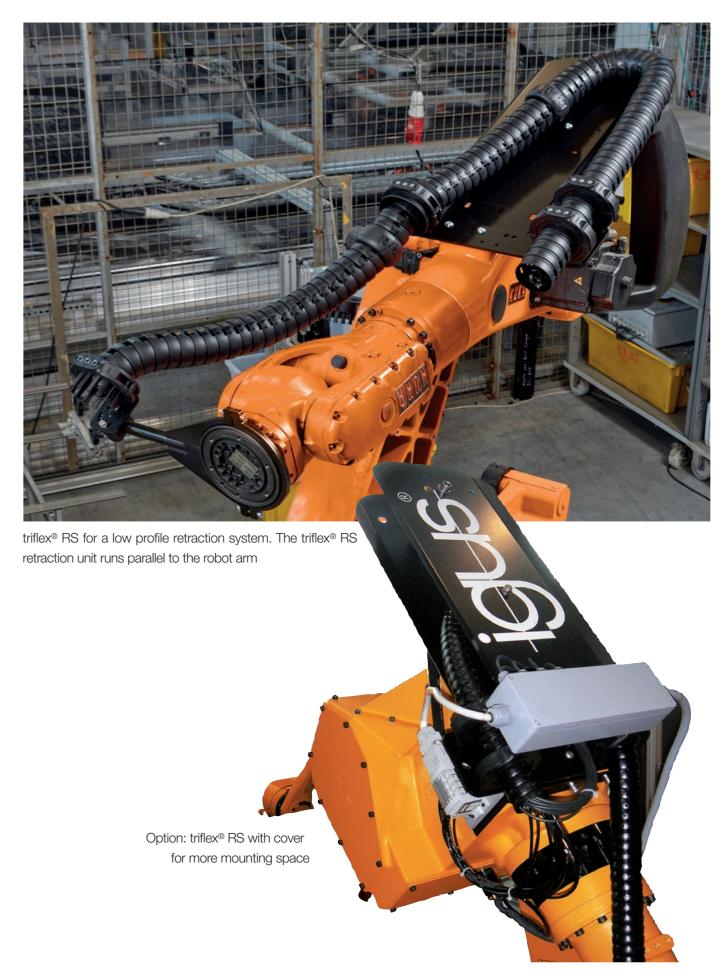
Possible Ø index for triflex®	R retraction systems


or	RSP	RS	RSE linear	RSLE	RSE
eries	ø index	Ø index	ø index	ø index	ø index
RC	60 - 125	40 - 100	40 - 125	70	40 - 50
RE	60 - 125	40 - 100	40 - 125	70	40 - 50
RCF	65 - 100	_	65 - 100	85	_
RL*	_	_	-		_
RLF*	_	_	_		_
RLF* Retraction systems not ava	ailable for this series	_			

Selection tool for triflex® R retraction systems with deflection

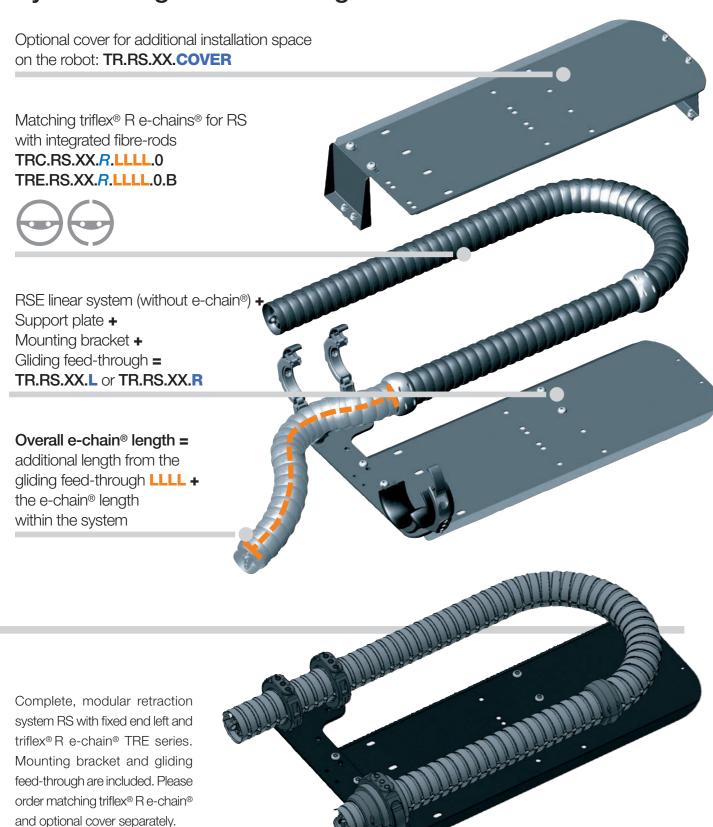
RS retraction system

Modular retraction system


Modular retraction system triflex® RS

triflex® RS is a retraction system for robots with medium to high payloads. With triflex® RS, the multi-axis triflex® R e-chain® is routed parallel to the robot arm. Integrated fibre rods produce a directed pretension, avoiding the formation of loops in the working area of the robot head. This also allows applications to be implemented in very limited space. triflex® RS offers safe energy supply for tools without stressing the cables, thus minimising downtimes.

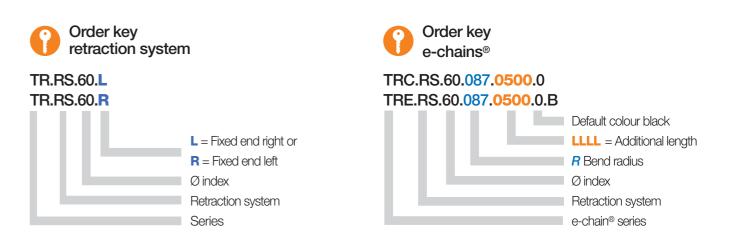
- Space-saving, closely routed on the
- A system solution proven and tested in thousands of applications
- Universal installation
- Integrated fibre-rods no external mechanical components such as springs or steel cables required!



RS - R(etraction) S(ystem)

67

RS retraction system System design with matching e-chain®



RS retraction system including e-chain®

Sample order of a complete TR.RS system, ø-Index 60, fixed end on the left, including cover and e-chain® (standard length: 500mm)

System	Insert Ø index / select fixed end .L / .R	TR.RS.60.L
+ Cover	Insert Ø index (cover optional)	TR.RS.60.COVER
+ e-chain®	Insert ø index / Insert bend radius R / Insert standard length LLLL	TRC.RS.60.087.0500.0
Order text:	TR.RS.60.L + TR.RS.60.COVER + TRC.RS.60.087.0500.0	

More optional accessories | RS modular retraction system

Cover For additional installation space and extreme movements ▶ Page 70

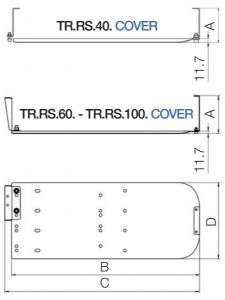
Adjustment unit For accurate adjustment of the system position ▶Page 110

Adapter consoles for custom mounting options ▶ Page 111

Axis 6 clamp for triflex®R mounting brackets

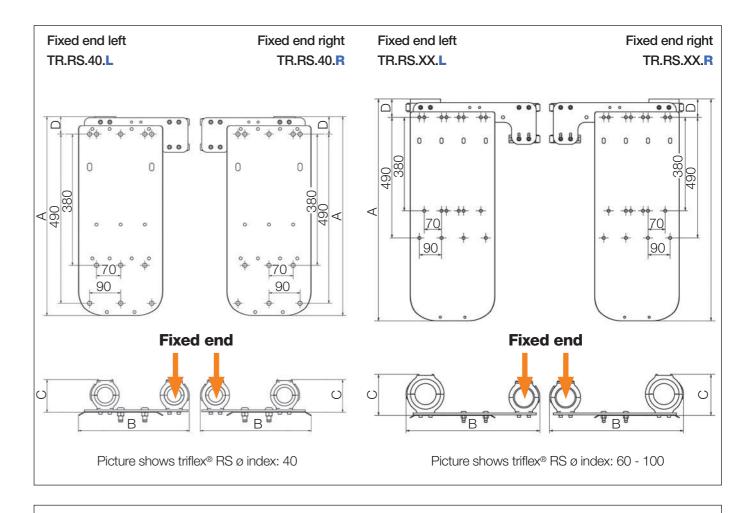
▶ Page 114

RS retraction system
Product range


Product range | RS modular retraction system

Ø		Part No.	Part No.	Retraction length ¹⁾	Α	В	С	D	Weight
Index		fixed end left	fixed end r ight	≤ [mm]	[mm]	[mm]	[mm]	[mm]	[kg]
30.		_	_	_	_	_	_	_	_
40.		TR.RS.40.L	TR.RS.40.R	460	576	301	95	51	3.5
50.		_	_	_	_	_	_	_	_
60.		TR.RS.60.L	TR.RS.60.R	550	900	528	150	65	8.7
65.		_	_	_	_	_	_	_	_
65. (R 20	OO) >	_	_	_	_	_	_	_	_
70.		TR.RS.70.L	TR.RS.70.R	620	900	545	167	65	9.2
85.		TR.RS.85.L	TR.RS.85.R	670	900	565	167	65	9.5
85. (R 24	40)	_	_	_	_	_	_	_	-
100.		TR.RS.100.L	TR.RS.100.R	580	938	614	167	108	11.5
125.		_	_	_	_	_	_	_	_

Please order matching triflex® R e-chain® separately. 1) Maximum retraction length


Product range | Cover, optional

Ø		Optional cover	Α	В	С	D	Load*	Weight
Index		retrofit kit	[mm]	[mm]	[mm]	[mm]	\leq [kg]	[kg]
30.		_	-	-	_	-	_	
40.		TR.RS.40.COVER	101.7	550	567.5	244.6	1.5	2.6
50.		_	_	_	_	_	_	_
60.		TR.RS.60.COVER	170.7	850	880	344.6	3.5	7.2
65.		_	_	_	_	_	_	_
65. (R 200)		_	_	_	_	_	_	_
70.		TR.RS.70.COVER	170.7	850	880	344.6	3.5	7.2
85.		TR.RS.85.COVER	170.7	850	880	344.6	3.5	7.2
85. (R 240)		_	_	_	_	_	_	_
100.		TR.RS.100.COVER	172	853	910.5	397.6	3.5	7.1
125.		_	_	_	_	_	_	_
*Maximum fi	ill wei	ght to be used with the cover						

optional

RS retraction system Installation dimensions

RS e-chains®

Product range

Product range | Matching e-chains® for RS

1) Available for B- and C-versions

*Standard lengths from the gliding feed-through outside the system - special lengths upon request.

e-chains® standard lengths*

LLLL [mm] | 0500 | 1000 | 1500 | 2000 |

Part No. with LLLL standard length value (measured from the gliding feed-through) corresponds to the robot arm length from axis 3. For example: TRC.RS.60.087.0500.0

RS e-chains®

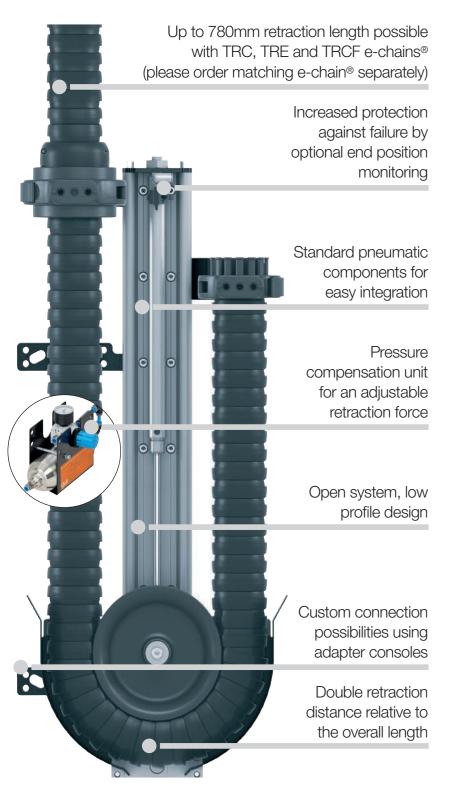
Cable length calculation

Calculating the overall e-chain® length | RS e-chains®

Ø		Bend radius	e-chain® length*	Number of	Overall e-chain® length
Index		R [mm]	[mm]	e-chains® links	[mm]
30.		_	_	-	
40.	•	058	1251	90	LLLL + 1251
50.	•	_	_	_	
60.	•	087	1734	85	LLLL + 1734
65.		_	_	_	
65. (R 20	00)	_	_	-	
70.		110	1895	74	LLLL + 1895
85.		135	2080	68	LLLL + 2080
85. (R 2 4	40)	_	_	-	
100.		145	2105	61	LLLL + 2105
125.		_	_	_	

*Values are related to the e-chain® length within the system

To calculate the overall e-chain® length: Please add the e-chains® length* within the system to the standard length LLLL (measured from the gliding feed-through)

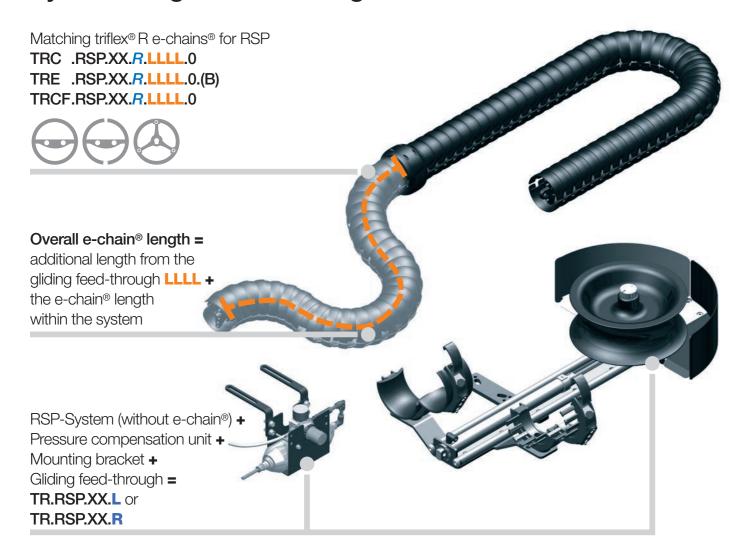

More information and installation height | RS e-chains®

- TRC series enclosed design, chip protection, smooth outer contour ▶ from page 28
- TRE series "easy" design, very easy to fill, simply press cables in ▶ from page 30

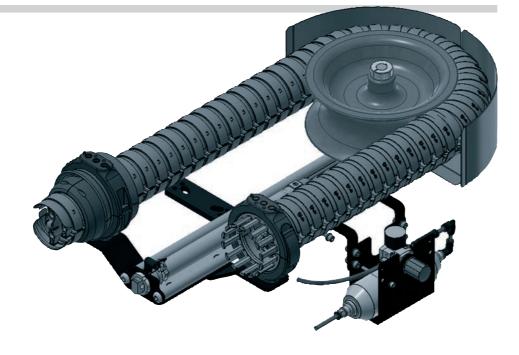
RSP retraction system

Pneumatic retraction system

Pneumatic retraction system triflex® RSP

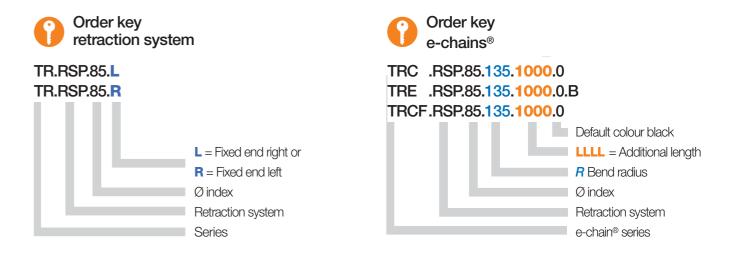

triflex® RSP prevents loops on the robot head, with a continuously adjustable retraction force. Extension lengths of up to 780mm enable a secure guidance of the cables and hoses, even with large arm diameters and very complex movements. The retraction forces can be adjusted using a pneumatic cylinder. Whether light or heavy fill weights, long or short robot arms - with the igus® RSP retraction system the retraction force can be adjusted to the individual application.

- For axis 3-6 on industrial robots
- Larger retraction forces than RS system
- Even larger e-chains® up to Ø 125mm can be guided safely
- Almost constant force over the complete travel, even with heavy fill weights
- The end position can be monitored so damage can be prevented
- Mounting options for numerous robot models and manufacturers with adapter consoles
- Very low energy consumption with integrated air reservoir

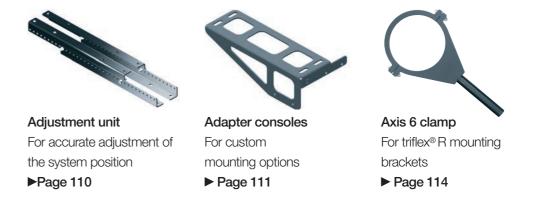

RSP - R(etraction) S(ystem) P(neumatic)

RSP retraction system System design with matching e-chain®

Complete, pneumatic retraction system RSP with fixed end left and triflex® R e-chain® TRE series. Pressure compensation unit, mounting bracket and gliding feedthrough are included in the delivery. Please order matching triflex® R e-chain® separately!



RSP retraction system order examples for retraction system including e-chain®

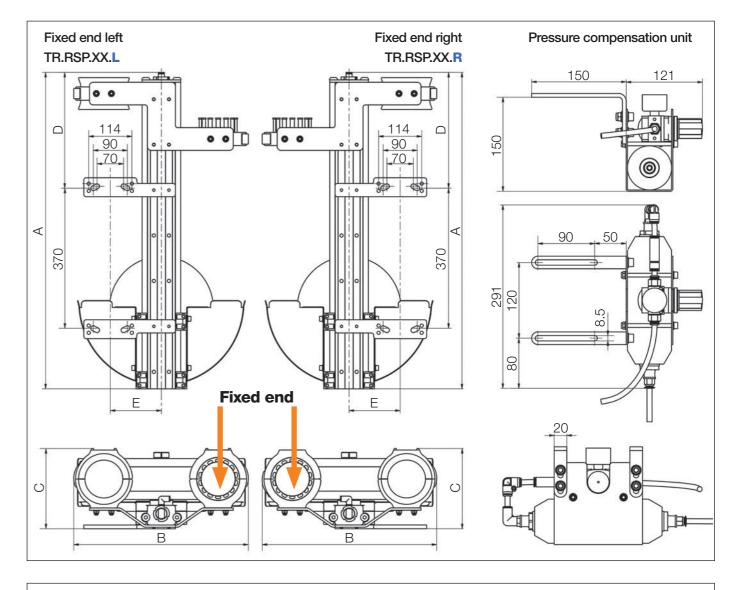


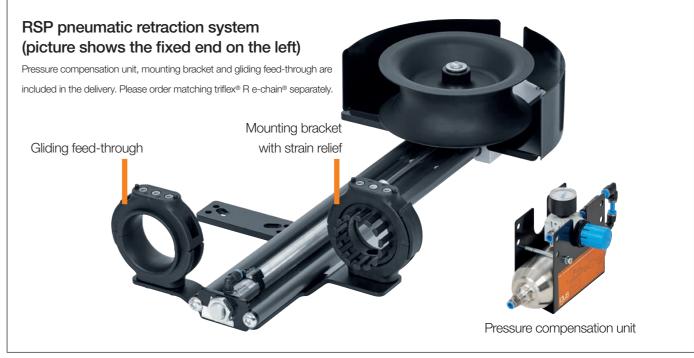
Sample order of a complete TR.RSP system, ø-Index 85, fixed end on the left, and e-chain® (standard length: 500mm)

System	Insert Ø index / select fixed end .L / .R	TR.RSP.85.L
+ e-chain® Order text:	Insert ø index / Insert bend radius R / Insert standard length LLLL TR.RSP.85.L + TRC.RSP.85.135.1000.0	TRC.RSP.85.135.1000.0

More optional accessories | RSP pneumatic retraction system

RSP retraction system


Product range | RSP pneumatic retraction system


Ø	Part No.	Part No.	Retraction length ¹⁾	Α	В	С	D	Ε	Weight 2)
Index	fixed end left	fixed end r ight	≤ [mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[kg]
30.	_	_	-	_	_	_	-	_	-
40.	_	_	_	_	_	_	_	-	_
50.	_	_	_	_	_	_	_	_	_
60.	TR.RSP.60.L	TR.RSP.60.R	580	792	396	177	277	135	16.1
65.	TR.RSP.65.L	TR.RSP.65.R	580	792	396	177	277	135	16.1
65. (R 200) ▶	_	_	_	_	_	_	_	_	-
70.	TR.RSP.70.L	TR.RSP.70.R	580	792	396	177	277	135	16.2
85.	TR.RSP.85.L	TR.RSP.85.R	620	836	461	213	306	135	19.4
85. (R 240)	_	_	_	_	_	_	_	_	-
100.	TR.RSP.100.L	TR.RSP.100.R	620	845	467	213	306	135	19.5
125.	TR.RSP.125.L	TR.RSP.125.R	780	1043	570	245	405	135	24.1

Pressure compensation unit, mounting bracket and gliding feed-through are included in the delivery. Please order matching triflex® R e-chain® separately.

1) Retraction length maximum 2) Plus 2.3 kg for pressure compensation unit

RSP retraction system Installation dimensions

RSP e-chains®

Product range

Product range | Matching e-chains® for RSP

Ø		Part No. TRC	Part No. TRE	Part No.TRCF
Index		enclosed	"easy" design	with snap lock mechanism
30.		_	_	_
40.		_	_	-
50.		_	_	-
60.		TRC.RSP.60.087.LLLL.0	TRE.RSP.60.087.LLLL.0.B	-
65.		_	_	TRCF.RSP.65.100.LLLL.0
65. (R 200) 🕨	_	_	-
70.		TRC.RSP.70.110.LLLL.0	TRE.RSP.70.110.LLLL.0.B	-
85.		TRC.RSP.85.135.LLLL.0	TRE.RSP.85.135.LLLL.0.B	TRCF.RSP.85.135.LLLL.0
85. (R 240) 🕨	_	_	-
100.		TRC.RSP.100.145.LLLL.0	TRE.RSP.100.145.LLLL.0.B/C1)	TRCF.RSP.100.145.LLLL.0
125.		TRC.RSP.125.182.LLLL.0	TRE.RSP.125.182.LLLL.0	-

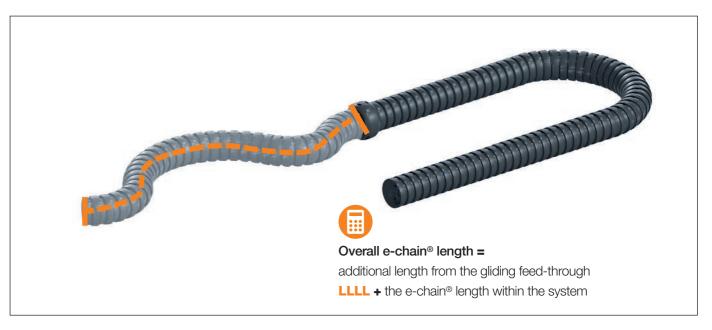
¹⁾ Available for B- and C-versions

e-chains® standard lengths*

LLLL [mm] | 0500 | 1000 | 1500 | 2000 |

Part No. with LLLL standard length value (measured from the gliding feed-through) corresponds to the robot arm length from axis 3. For example: TRC.RSP.60.087.0500.0

RSP e-chains®


Cable length calculation

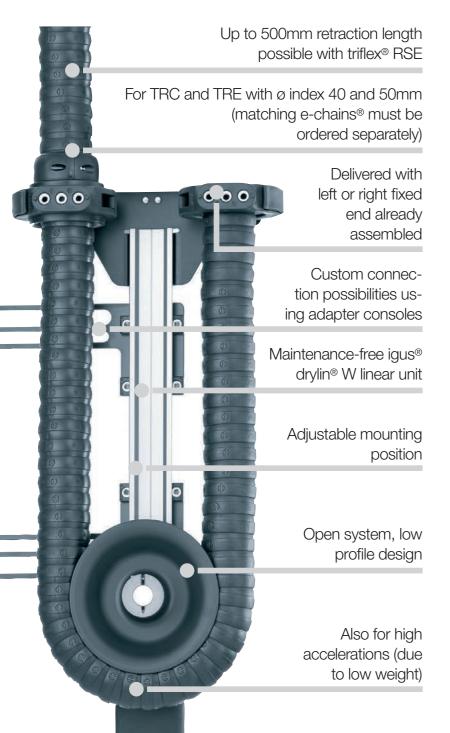
Calculating the overall e-chains® length | RSP e-chains®

Ø		Bend radius	e-chain® length*	Number of	Overall e-chain® length
Index		R [mm]	[mm]	e-chains® links	[mm]
30.		_	-	_	_
40.		_	_	_	_
50.	>	-	_	-	_
60.	>	087	1489	73	LLLL + 1489
65.	>	100	1432	62	LLLL + 1432
65. (R 2	200)	-	_	-	_
70.	>	110	1484	58	LLLL + 1484
85.	>	135	1622	53	LLLL + 1622
85. (R 2	240)	-	-	-	_
100.	>	145	1656	48	LLLL + 1656
125.		182	1962	44	LLLL + 1962

^{*}Values are related to the e-chain® length within the system

To calculate the overall e-chain® length: Please add the e-chain® length* within the system to the standard length LLLL (measured from the gliding feed-through)

More information and installation height | RSP e-chains®


- TRC series enclosed design, chip protection, smooth outer contour ▶ from page 28
- TRE series "easy" design, very easy to fill, simply press cables in ▶ from page 30
- TRCF series enclosed design with snap-lock mechanism, chip-repellent, smooth outer contour ▶ from page 32

^{*}Standard lengths from the gliding feed-through outside the system - special lengths upon request.

RSE retraction system

Cost-effective retraction system with deflection

Cost-effective retraction system with deflection for small robots triflex® RSE

Specially developed for robots with small to medium cable and hose filling, the igus® triflex® RSE retraction system offers a way to prevent loop formation in the workspace of the robot, even in highly dynamic applications.

- For series TRC·TRE with sizes 40 and 50mm
- Extremely fast response, even in highly dynamic robot programs
- Low weight, very little reduction in robot handling capacity
- Universal adjustable installation brackets
- Maintenance and lubrication-free igus® drylin® W linear unit
- For maximum degrees of freedom
- For cable diameters up to 18.8mm

RSE - R(etraction) S(ystem) E(lastic)

RSE retraction system
System design with matching e-chain®

Matching triflex® R e-chains® for RSE with integrated fibre-rods

robot, optional: TR.RSE.XX.COVER

Cover for additional installation space on the

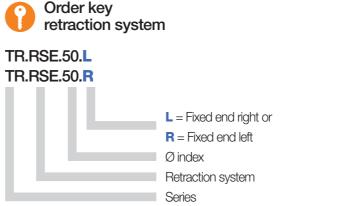
TRC.RSE.XX.R.LLLL.0 TRE.RSE.XX.R.LLLL.0.B

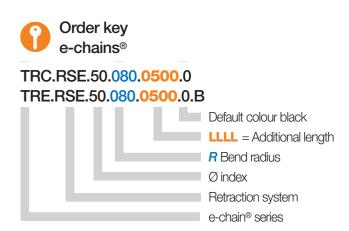
Overall e-chain® length = additional length from the gliding feed-through LLLL +

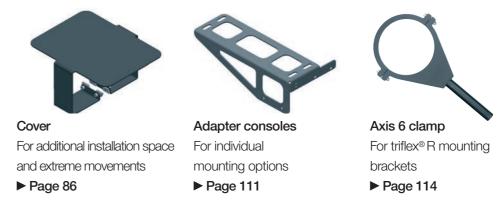
the e-chain® length within the system

RSE system (e-chain® not included) + Mounting bracket + Gliding feed-through = TR.RSE.(02).XX.L or TR.RSE.(02).XX.R

and optional cover separately.



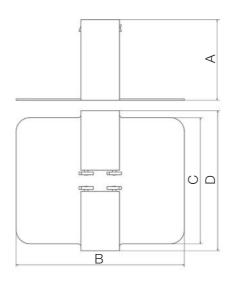

RSE retraction system order examples for retraction system including e-chain®


Sample order of a complete TR.RSE system, Ø index 50, fixed end on the left, including cover and e-chain® (standard length: 500mm)

System	Insert Ø index / select fixed end .L / .R	TR.RSE.50.L
+ Cover	Insert Ø index (cover optional)	TR.RSE.50.COVER
+ e-chain®	Insert ø index / Insert bend radius R / Insert standard length LLLL	TRC.RSE.50.080.0500.0
Order text:	TR.RSE.50.L + TR.RSE.50.COVER + TRC.RSE.50.080.0500.0	

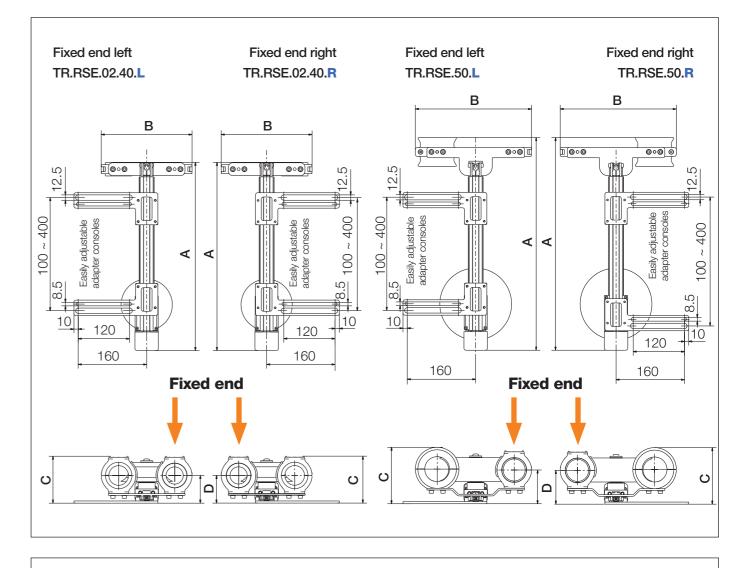
More optional accessories | RS modular retraction system

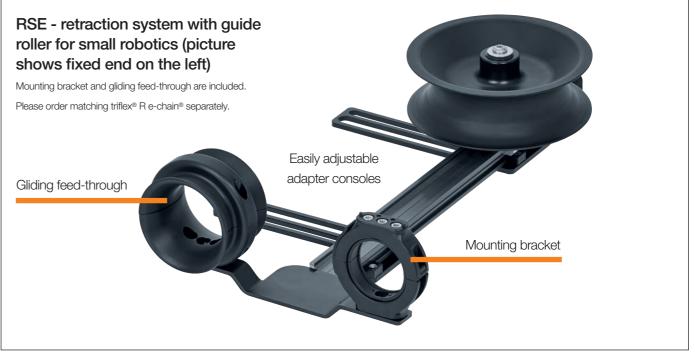
RSE retraction system


Product range | RSE cost-effective retraction system with deflection

Ø		Part No.	Part No.	Retraction length ¹⁾	Α	В	С	D	Weight
Index		fixed end left	fixed end r ight	≤ [mm]	[mm]	[mm]	[mm]	[mm]	[kg]
30.	•	_	_	_	_	_	_	_	_
40.	•	TR.RSE.02.40.L	TR.RSE.02.40.R	500	440	220	110	64.7	1.6
50.		TR.RSE.50.L	TR.RSE.50.R	500	497	275	132	79	2.1
60.	•	_	_	_	_	_	_	_	_
65.		_	_	_	_	_	_	_	_
65. (R 20	O) >	_	_	_	_	_	_	_	_
70.		_	_	_	_	_	_	_	_
85.		_	_	_	_	_	_	_	_
85. (R 2 4	10)	_	_	_	_	_	_	_	_
100.	•	_	_	_	_	_	_	_	_
125.	•	_	_	_	_	_	_	_	_

Please order matching triflex® R e-chain® separately. 1) Maximum retraction length


Product range | RSE cover, optional


Ø		Optional cover	Α	В	С	D	Load*	Weight
Index		retrofit kit	[mm]	[mm]	[mm]	[mm]	\leq [kg]	[kg]
30.	\triangleright		-	_	_	_	_	_
40.		TR.RSE.40.COVER	115	240	180	200	1.5	1.1
50.		TR.RSE.50.COVER	126	300	248	248	1.5	1.7
60.			_	_	_	_	_	_
65.			_	_	_	_	_	_
65. (R 200)			_	_	_	_	_	_
70.			_	_	_	_	_	_
85.			_	_	_	_	_	_
85. (R 240)			-	_	_	_	_	_
100.			_	_	_	_	_	_
125.			_	_	_	_	_	_
*N Anadisas usa fi	11	in late to land a constant at the same of						

*Maximum fill weight to be used with the cover

RSE retraction system Installation dimensions

RSE e-chains®

Product range

Product range | Matching e-chains® for RSE

Ø		Part No. TRC	Part No. TRE
Index		enclosed	"easy" design
30.		_	_
40.	>	TRC.RSE.40.058. LLLL.0	TRE.RSE.40.058. LLLL.0.B
50.	>	TRC.RSE.50.080. LLLL.0	TRE.RSE.50.080. LLLL.0.B
60.	>	-	_
65.	>	-	_
65. (R 200)) 🏲	-	_
70.	>	-	_
85.	>	-	_
85. (R 240)) 🏲	-	_
100.	>	-	_
125.	>	-	_

^{*}Standard lengths from the gliding feed-through outside the system - special lengths upon request.

More information ▶ www.igus.co.uk/triflex-RSE

e-chains® standard lengths*

LLLL [mm] | 0500 | 0750 | 1000 | 1250 |

Part No. with LLLL standard length value (measured from the gliding feed-through) corresponds to the robot arm length from axis 3. For example: TRC.RSE.40.058.0500.0

RSE e-chains®

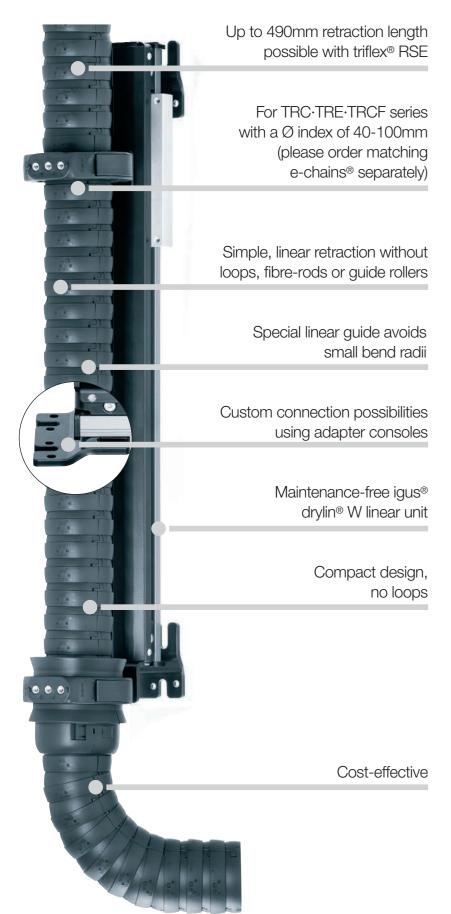
Cable length calculation

Calculating the overall e-chain® length | RSE e-chains®

Ø		Bend radius	e-chain® length*	Number of	Overall e-chain® length
Index		R [mm]	[mm]	e-chains® links	[mm]
30.	>	_	_	_	_
40.	>	058	904	65	LLLL + 904
50.	>	080	1044	60	LLLL + 1044
60.	>	_	_	_	_
65.	>	_	_	_	_
65. (R 2	200)	_	_	_	_
70.	>	_	_	_	_
85.	>	_	_	_	_
85. (R 2	240)	_	_	_	_
100.	>	_	-	_	_
125.	>	_	_	_	_

^{*}Values are related to the e-chain® length within the system

To calculate the overall e-chain® length: Please add the e-chains® length* within the system to the standard length LLLL (measured from the gliding feed-through)


More information and installation height | RSE e-chains®

- TRC series Enclosed design, chip protection, smooth outer contour ▶ from page 28
- TRE series "easy" design, very easy to fill, simply press cables in ▶ from page 30

RSE linear retraction system

Linear, space-saving retraction system

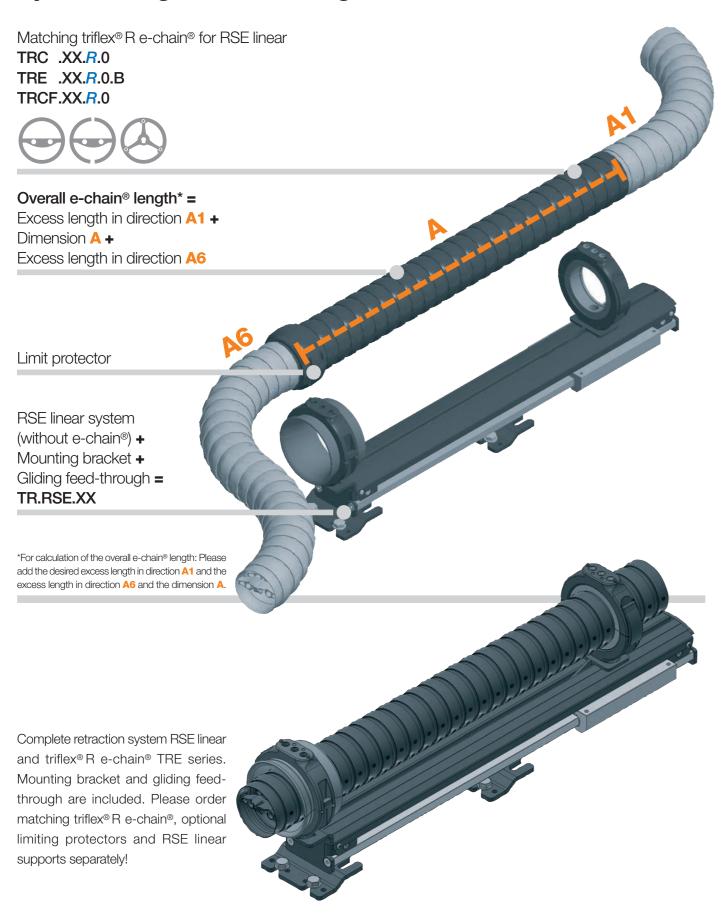
Linear, space-saving retraction system triflex® RSE linear

The more complex the automated production technology, the greater the requirements placed on the energy supply system. It is increasingly the case that not only electric power and fluids have to be supplied to production robots; but also laser cables and supply hoses for rivets, pins and screws. As these often cannot function with small bend radii, the new triflex® RSE relies on very easy linear retraction without loops and spring rods or deflection rollers. The purpose of the triflex® RSE retraction system is to hold the e-chain® as closely as possible to the robot arm in order to prevent the e-chain® from intruding upon or blocking the robot's movements.

- Simple, linear retraction without loops, fibre-rods or guide rollers
- For series TRC·TRE·TRCF with a ø-index of 40-100mm
- Special linear guide avoids small bend
- Up to 490mm retraction length possible
- Space-saving, cost-effective
- Maintenance-free drylin® W linear unit

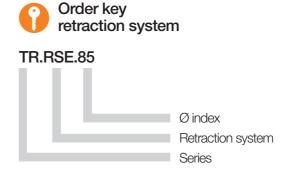
RSE linear - R(etraction) S(ystem) E(lastic) linear

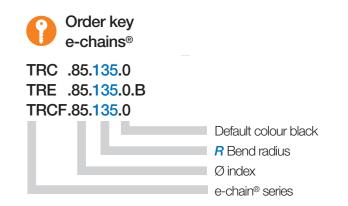
igus® TR.RSE system on test robot


Lightweight, linear retraction system for small robots. RSE linear for sizes TR.RSE.40 to TR.RSE.50 ▶ from page 94

Linear retraction system for sizes 60-100 with attachment brackets for a wide variety of robot models. RSE linear for sizes TR.RSE.60 to TR.RSE.100 ▶ from page 96

RSE linear retraction system System design with matching e-chain®




RSE linear retraction system Order examples for retraction system including e-chain®

Sample order of a complete TR.RSE linear system, Ø index 85, and e-chain® (length: 2 m)

System	Select ø index	TR.RSE.85
+ e-chain®	Insert Ø index / Insert bend radius R / Insert standard length in metres	2m TRC.85.135.0
+ Protector	Select protector option / specify ø index	TR.85.30
Order text:	TR.RSE.85. + 2 m TRC.85.135.0 + TR.85.30	

Other optional accessories | RSE linear pneumatic retraction system

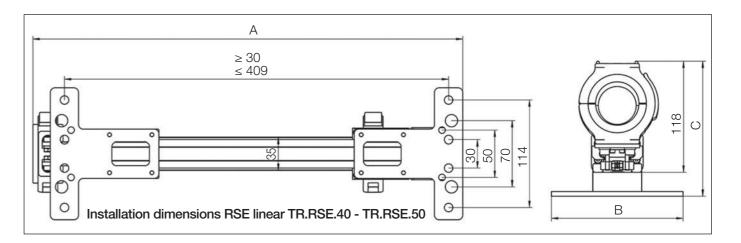
RSE linear support For lateral deflection of the triflex® R, optional ► Page 96

Protectors with screw connections or quick release ► Page 98

Adapter consoles For custom mounting options ▶ Page 111

Axis 6 clamp For triflex® R mounting bracket

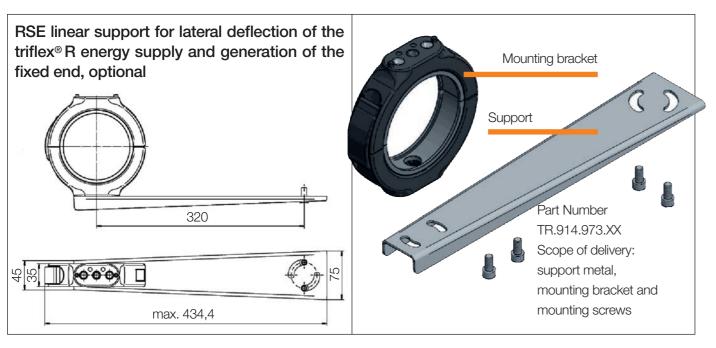
▶ Page 114

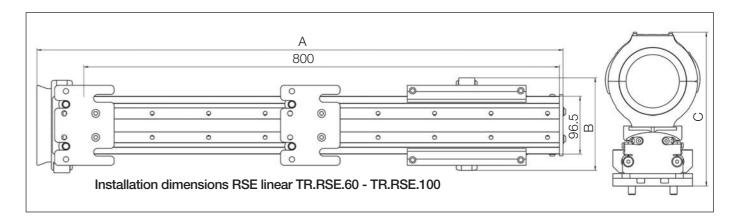

RSE linear retraction system Product range TR.RSE.40 - TR.RSE.50

Product range | RSE linear TR.RSE.40 - TR.RSE.50

Ø		Part No.	Retraction length ¹⁾	Α	В	С	Weight	
Index		RSE linear	≤ [mm]	[mm]	[mm]	[mm]	[kg]	
30.	•	_	_	_	_	_	_	
40.	•	TR.RSE.40	290	457	140	143	1.4	
50.	•	TR.RSE.50	290	475	140	151	1.7	
Please ord	er ma	tching triflex® R e-cha	nin® separately. 1) Maximum retraction length	n				
RSE lin	ear s	size TR.RSE.60	to TR.RSE.100 ▶ from page 90	6				

RSE linear retraction system Installation dimensions TR.RSE.40 - TR.RSE.50


RSE linear retraction system Product range TR.RSE.60 - TR.RSE.100


Product range | RSE linear TR.RSE.60 - TR.RSE.100

Ø		Part No.	Retraction length ¹⁾	Α	В	С	Weight	Part No.	General image
Index		RSE linear	≤ [mm]	[mm]	[mm]	[mm]	[kg]	RSE support	
60.		TR.RSE.60	490	868	134	231	9.9	TR.914.973.60	45
65.		TR.RSE.65	490	880	134	231	10.0	TR.914.973.65	
65. (R 200) >	TR.RSE.65.200*	490	880	134	231	10.0	_	
70.		TR.RSE.70	490	878	155	258	10.0	TR.914.973.70	
85.		TR.RSE.85	490	885	155	258	10.0	TR.914.973.85	For the lateral
85. (R 24 0) >	TR.RSE.85.240	490	885	155	258	10.0	_	deflection of the
100.		TR.RSE.100	490	886	170	264	10.2	TR.914.973.100	energy supply
125.	>	_	_	_	_	_	_	_	
		equest. Please consult igus ching triflex® R e-chain® se	© for delivery time. parately. 1) Maximum retrac	tion length	n Optional R	SE support	must be orde	ered separately.	
RSE line	ar s	size TR.RSE.40 to T	R.RSE.50 ► from p	age 94					

Product range | RSE linear support, optional

RSE linear retraction system Installation dimensions TR.RSE.60 - TR.RSE.100

RSE linear e-chains®

Product range

Product range | Matching e-chains® for RSE linear

Ø	Part No.	Part No.	Part No.
Index	TRC	TRE	TRCF with
	enclosed	"easy" design	snap lock mechanism
30.	_	_	_
40.	TRC.40.058.0	TRE.40.058.0.B	-
50.	TRC.50.080.0	TRE.50.080.0.B	-
60.	TRC.60.087.0	TRE.60.087.0.B	-
65.	_	_	TRCF.65.100.0
65. (R 200)	_	_	TRCF.65.200.0
70.	TRC.70.110.0	TRE.70.110.0.B	-
85.	TRC.85.135.0	TRE.85.135.0.B	TRCF.85.135.0
85. (R 240)	_	_	TRCF.85.240.0
100.	TRC.100.145.0	TRE.100.145.0.B/C ¹⁾	TRCF.100.145.0
125.	_	_	_
1) Available for	B- and C-versions		

Please note that all triflex® R e-chains can be lengthened and shortened individually and can be customized to meet the needs of your application.

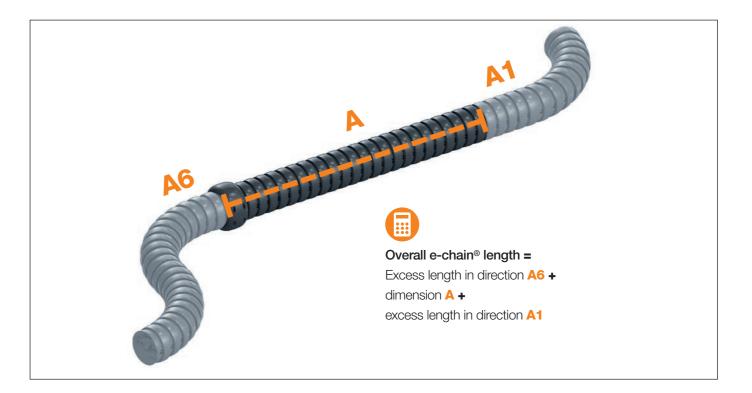
Please order e-chains® as piece parts and purchase a protector for each one.

Product range | Matching protectors for RSE linear

Ø Index	Part No. protector with screw fastener	Part No. protector with quick-lock fastener	General image protector options
30.	· <u> </u>	-	
40.	TR.40.10	TR.40.30	
50.	TR.50.10	TR.50.30*	
60.	TR.60.10	TR.60.30	0
65.	TR.65.10	-	2
65. (R 200)	TR.65.200.10*	_	
70.	TR.70.10	TR.70.30	
85.	TR.85.10	TR.85.30	
85. (R 240)	TR.85.240.10	-	
100.	TR.100.10	TR.100.30	More information on
125.	-	-	protectors ► Page 47

^{*}Available upon request. Please consult igus® for delivery time.

Please order protectors with screw connections or quick release as limit protectors.

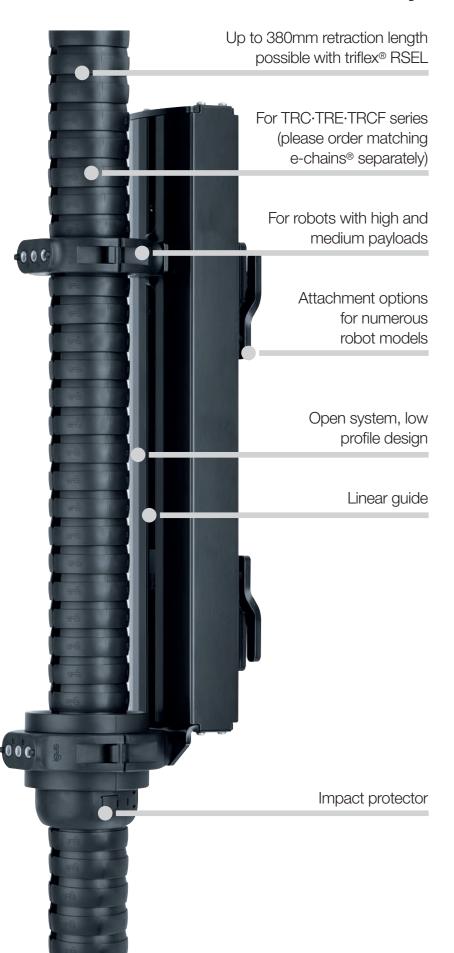

RSE linear e-chains®

Cable length calculation

Calculation of the overall e-chain® length | RSE linear e-chains®

Ø		Bend radius	Dimension A	General image	Direction A1
Index		R [mm]	[mm]	overall e-chain® length	excess length
30.	>	_	_		
40.	>	058	390		
50.		080	390	Dimension A	ATT II
60.		087	750	-/3	
65.		100	750		
65. (R 20)	0)	200	750	Direction A6	
70.		110	750	excess length	
85.	>	135	750		
85. (R 24)	(O) (240	750		
100.		145	750	A Property	
125.		_	_		

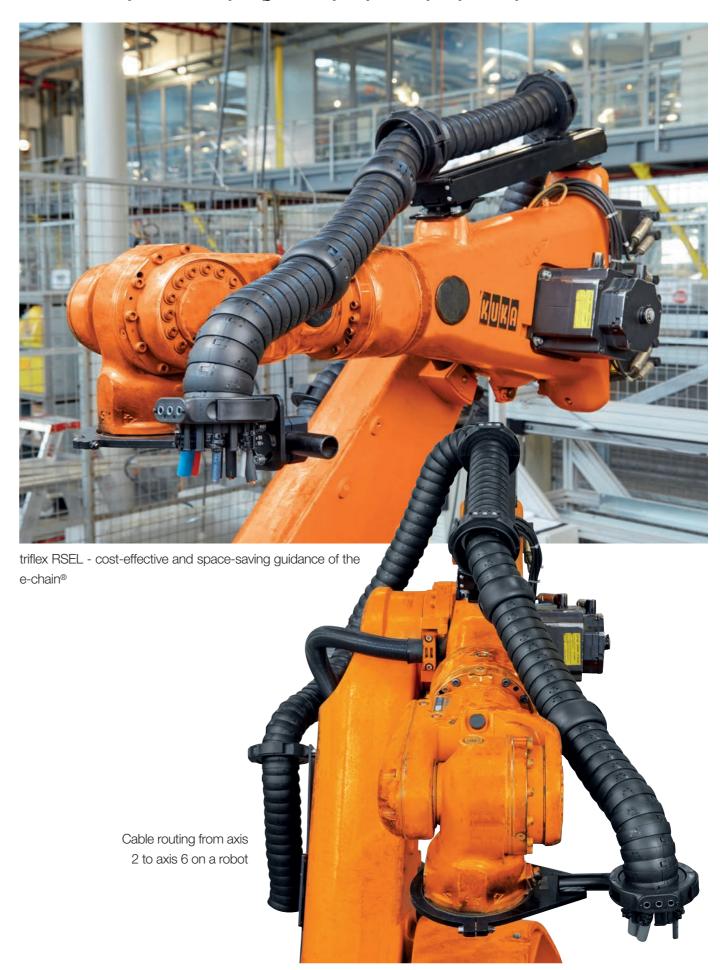
For calculation of the overall e-chain® length: Please add the desired excess length in direction A1 and the excess length in direction A6 and the dimension A. Additionally, at least 1 limit protector must be ordered.



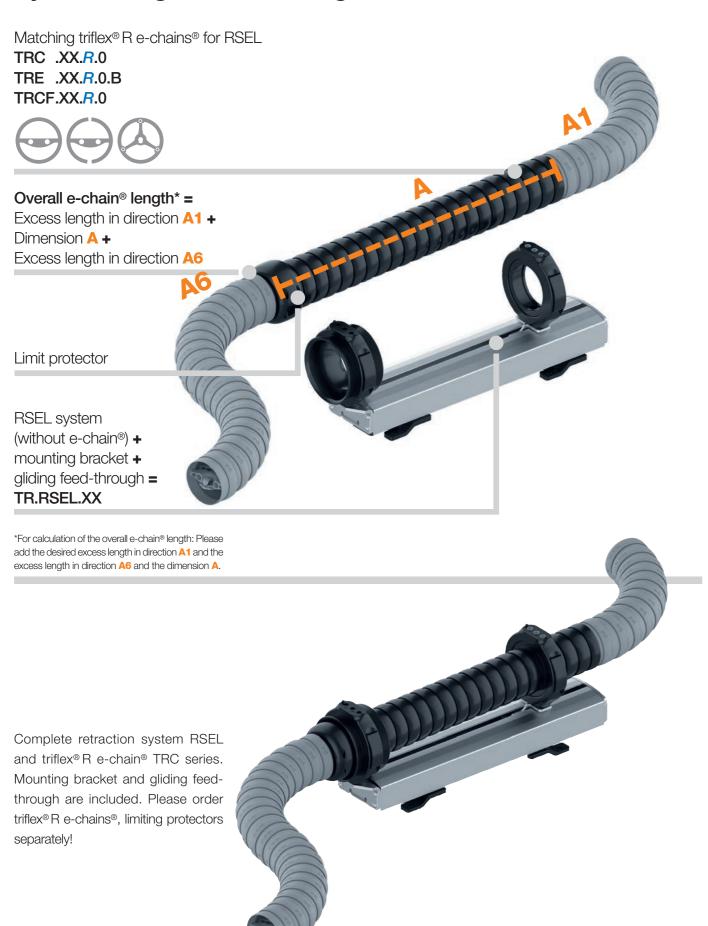
More information and installation height | RSE linear e-chains®

- TRC series enclosed design, chip-protection, smooth outer contour ▶ from page 28
- TRE series "easy" design, very easy to fill, simply press cables in ▶ from page 30
- TRCF series enclosed design with snap-lock mechanism, chip-repellent, smooth outer contour ▶ from page 32

RSEL retraction system New Cost-effective linear retraction system New



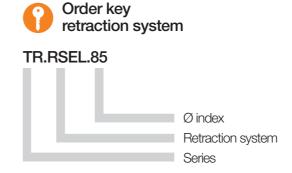
Cost-effective, linear retraction system triflex® RSEL

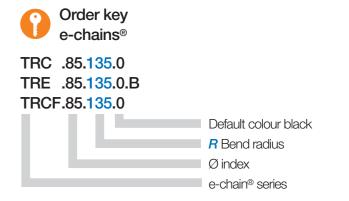

Avoid looping on the robot head - even more cost-effective and even for corrugated tubes, with the RSEL retraction system. Especially designed for robots with medium to high payload, the igus® triflex® RSEL retraction system offers an option to actively avoid looping in the working area of the robot by keeping the e-chain® as close as possible to the robot arm.

- Cost-optimised retraction system, easy to retrofit
- Due to its standard dimensions and the very compact design, the RSEL retraction system can be mounted directly on the 3rd axis of all common types of robots
- Retraction element with elastomer band
- Prevents the e-chain[®] from looping or blocking the motion, even in highly dynamic applications
- Short type
- Attachment options for numerous robot
- For robots with high and medium
- The fixed end of the e-chain® can be freely selected due to the linear design of the RSE retraction system

RSEL - R(etraction) S(ystem) E(lastic) L(inear)

RSEL retraction system System design with matching e-chain®




RSEL retraction system Order examples for retraction system including e-chain®

Sample order of a complete TR.RSEL system, Ø index 85, and e-chain® (length: 2m)

System	Select ø index	TR.RSEL.85
+ e-chain®	Insert Ø index / Insert bend radius R / Insert standard length in metres	2m TRCF.85.135.0
+ Protector	Select protector option / specify ø index	TR.85.30
Order text:	TR.RSEL.85. + 2 m TRCF.85.135.0 + TR.85.30	

More optional accessories | RSEL retraction system

Protectors with screw connections or quick release ▶ Page 106

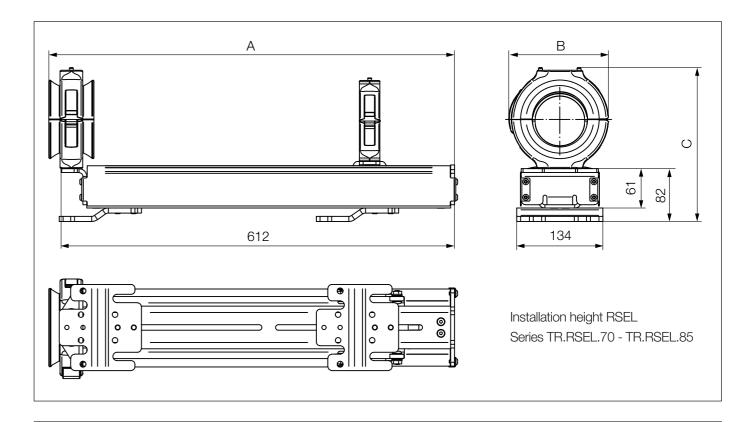
Adapter consoles For custom mounting options ► Page 111

Axis 6 clamp For triflex® R mounting brackets

▶ Page 114

RSEL retraction system

Product range



Product range | RSEL retraction system

Ø		Part Number	Retraction length ¹⁾	Α	В	С	Weight
Index		RSEL	≤ [mm]	[mm]	[mm]	[mm]	[kg]
30.	>	_	_	_	_	_	_
40.	>	_	_	_	_	_	_
50.	>	_	_	_	_	_	_
60.	>	_	_	_	_	_	_
65.	>	_	_	_	_	_	_
65. (R 2	200)	_	-	_	_	_	_
70.	>	TR.RSEL.70	380	631	155	239	8.8
85.	>	TR.RSEL.85	380	638	155	251	8.9
85. (R 2	240)	_	-	_	_	_	_
100.	>	_	_	_	_	_	_
125.		_	_	_	_	_	_

Please order matching triflex® R e-chain® separately. 1) Maximum retraction length

RSEL retraction system Installation dimensions

RSEL e-chains®

Product range

Product range | Matching e-chains® for RSEL

Ø	Part No.	Part No.	Part No.
Index	TRC	TRE	TRCF with
	enclosed	"easy" design	snap lock mechanism
30.	_	_	_
40.	_	_	_
50.	_	_	_
60.	_	_	_
65.	_	_	_
65. (R 200)	_	_	_
70.	TRC.70.110.0	TRE.70.110.0.B	_
85.	TRC.85.135.0	TRE.85.135.0.B	TRCF.85.135.0
85. (R 240)	_	_	_
100.	_	_	_
125.	_	_	_
1) Available for	or B- and C-versions		

Please note that all triflex® R e-chains can be lengthened and shortened individually and can be customized to meet the needs of your application.

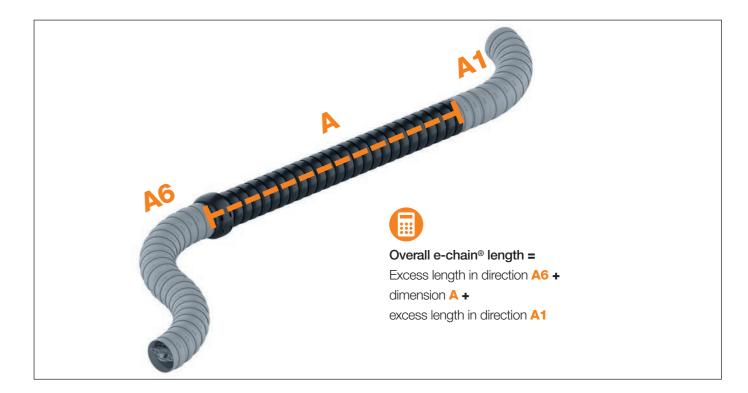
Please order e-chains® as piece parts and purchase a protector for each one.

Product range | Matching protectors for RSEL

Ø Index		• Part No. protector with screw fastener	Part No. protector with quick-lock fastener	General image protector options
30.		_	_	
40.		_	_	
50.		_	_	
60.		_	_	0 7
65.		_	_	2
65. (R 200)		_	_	4
70.		TR.70.10	TR.70.30	
85.		TR.85.10	TR.85.30	
85. (R 240)		_	_	
100.		_	_	More information on
125.		_	_	Protectors ▶ Page 47

^{*}Available upon request. Please consult igus® for delivery time.

Please order protectors with screw connections or quick release as limit protectors.

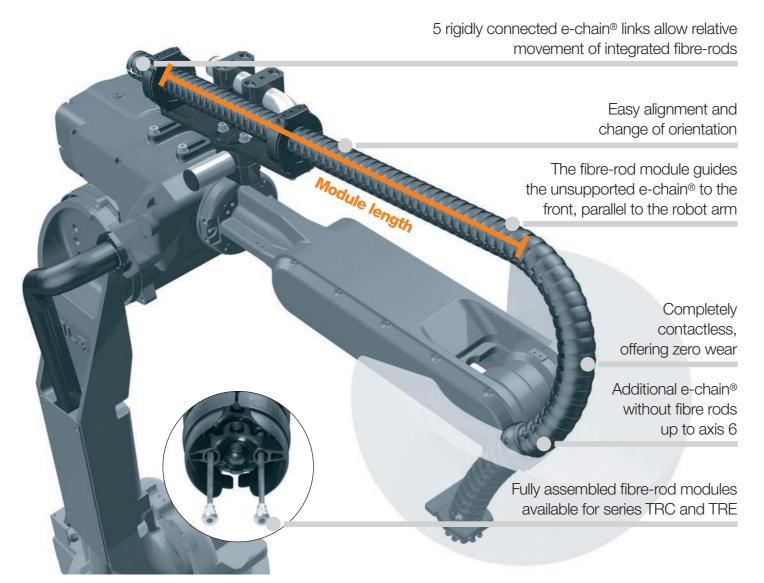

RSEL e-chains®

Cable length calculation

Calculation of the overall e-chain® length | RSEL e-chains®

Ø		Bend radius	Dimension A	General image	Direction A1
Index		R [mm]	[mm]	overall e-chain® length	excess length
30.		_	_	Dimension A	
40.		_	_		
50.		_	_	Direction A6	
60.		_		excess length	
65.		_	_		
35. (R 240)		_			
70.		110	530		
35.		135	530		0
35. (R 240)		_	_		
100.		_	_	91	
125.		_	_		

For calculation of the overall e-chain® length: Please add the desired excess length in direction A1 and the excess length in direction A6 and the dimension A. Additionally, at least 1 limit protector must be ordered.


More information and installation height | RSEL e-chains®

- TRC series enclosed design, chip-protection, smooth outer contour ▶ from page 28
- TRE series "easy" design, very easy to fill, simply press cables in ▶ from page 30
- TRCF series enclosed design with snap-lock mechanism, chip-repellent, smooth outer contour ▶ from page 32

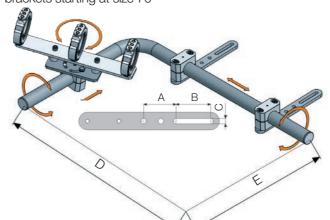
triflex® R accessories

Fibre rod modules and universal mounting kits

Fibre-rod modules for a directional pretension of the e-chain®

We supply fully assembled fibre-rod modules for triflex® R e-chain® Series TRC and TRE. The integrated fibre-rods generate a directional pretension for the e-chain®. This system creates a unique choice of movements for the energy supply system to the final axis of industrial robots. The fibre-rod module guides the unsupported e-chain® to the front, parallel to the robot arm. The bending properties of the modules depends on the installation orientation: only the front end allows flexible movement. The five rear e-chain® links are rigidly connected to allow relative movement of the integrated fibre-rods. This results in a fully contactless and therefore zero-wear energy supply system, designed for moderate movements with limited rotational motion of the axes. Additional e-chain® without fibre-rods for the final axis area needs to be ordered separately.

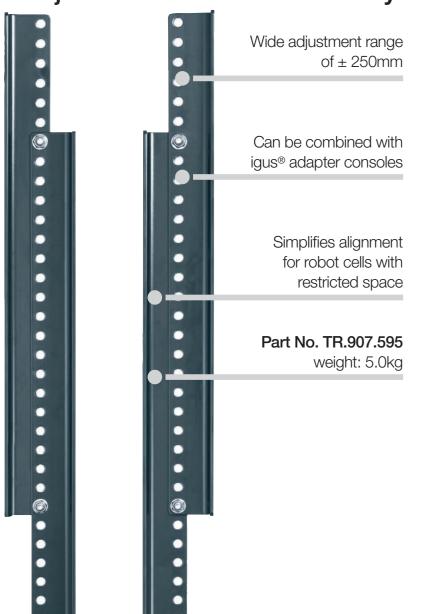
Product range


For series TRC·TRE

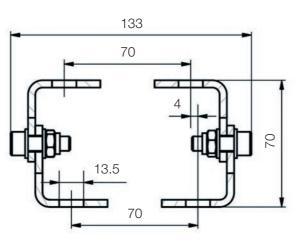
Part No. fibre-rod mo	odules	Length
for TRC / TRE TRC.40	TRE.40	[m]
TRC.F.40.1000.1.0	TRE.F.40.1000.1.0.B	≈ 1.0
TRC.F. 40 . 1000 .1.0	TRE.F.40.0900.1.0.B	≈ 1.0 ≈ 0.9
TRC.F. 40 .0800.1.0*	TRE.F.40.0800.1.0.B*	≈ 0.9 ≈ 0.8
TRC.F. 40 .0 70 0.1.0	TRE.F.40.0700.1.0.B	
		≈ 0.7
TRC.F. 40 .0600.1.0	TRE.F. 40 .0600.1.0.B	≈ 0.6
TRC.F. 40 .0500.1.0	TRE.F.40.0500.1.0.B	≈ 0.5
TRC.F. 40 .0400.1.0	TRE.F. 40 . 0400 .1.0.B	≈ 0.4
TRC.50	TRE.50	
TRC.F. 50 . 1400 .1.0	TRE.F. 50 . 1400 .1.0.B	≈ 1.4
TRC.F. 50 . 1200 .1.0	TRE.F. 50 . 1200 .1.0.B	≈ 1.2
TRC.F. 50 . 1000 .1.0*	TRE.F. 50 . 1000 .1.0.B*	≈ 1.0
TRC.F. 50 . 0800 .1.0	TRE.F. 50 . 0800. 1.0.B	≈ 0.8
TRC.F. 50 . 0600 .1.0	TRE.F. 50 . 0600 .1.0.B	≈ 0.6
TRC.F. 50 . 0400 .1.0	TRE.F. 50 . 0400 .1.0.B	≈ 0.4
TRC.60	TRE.60	
TRC.F. 60 . 1400 .1.0	TRE.F. 60 . 1400 .1.0.B	≈ 1.4
TRC.F. 60 . 1200 .1.0	TRE.F.60.1200.1.0.B	≈ 1.2
TRC.F. 60 . 1000 .1.0*	TRE.F.60.1000.1.0.B*	≈ 1.0
TRC.F. 60 . 0800 .1.0	TRE.F. 60 .0800.1.0.B	≈ 0.8
TRC.F. 60 .0600.1.0	TRE.F. 60 .0600.1.0.B	≈ 0.6
TRC.F. 60 . 0400 .1.0	TRE.F. 60 . 0400 .1.0.B	≈ 0.4
TRC.70	TRE.70	
TRC.F. 70 .1800.1.0	TRE.F. 70 .1800.1.0.B	≈ 1.8
TRC.F. 70 . 1600 .1.0	TRE.F. 70 .1600.1.0.B	≈ 1.6
TRC.F. 70 . 1400 .1.0	TRE.F. 70 . 1400 .1.0.B	≈ 1.4
TRC.F. 70 . 1200 .1.0*	TRE.F. 70 . 1200 .1.0.B*	≈ 1.2
TRC.F. 70 .1000.1.0	TRE.F. 70 .1000.1.0.B	≈ 1.0
TRC.F. 70 .0800.1.0	TRE.F. 70 .0800.1.0.B	≈ 0.8

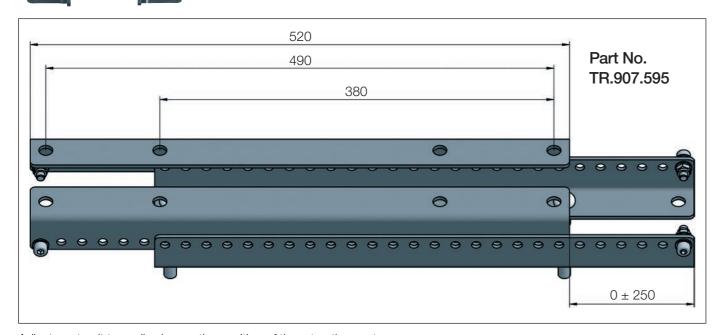
TRC.85	TRE.85	[m]
TRC.F. 85 .2000.1.0	TRE.F. 85 .2000.1.0.B	≈ 2.0
TRC.F. 85 .1800.1.0	TRE.F. 85 .1800.1.0.B	~ 2.0 ≈ 1.8
TRC.F. 85 .1600.1.0	TRE.F. 85 .1600.1.0.B	≈ 1.6
TRC.F. 85 .1400.1.0*	TRE.F. 85 . 1400 .1.0.B*	≈ 1.4
TRC.F. 85 .1200.1.0	TRE.F. 85 .1200.1.0.B	≈ 1.2
TRC.F. 85 .1000.1.0	TRE.F. 85 .1000.1.0.B	≈ 1.0
TRC.F. 85 .0800.1.0	TRE.F. 85 .0800.1.0.B	≈ 0.8
TRC.100	TRE.100	
TRC.F. 100 . 2000 .1.0	TRE.F.100.2000.1.0.B/ _• C ¹⁾	≈ 2.0
TRC.F. 100 . 1800 .1.0	TRE.F.100.1800.1.0.B/.C1)	≈ 1.8
TRC.F. 100 . 1600 .1.0	TRE.F.100.1600.1.0.B/.C1)	≈ 1.6
TRC.F. 100 . 1400 .1.0*	TRE.F.100.1400.1.0.B/C1*	≈ 1.4
TRC.F. 100 . 1200 .1.0	TRE.F.100.1200.1.0.B/.C1)	≈ 1.2
TRC.F. 100 . 1000 .1.0	TRE.F.100.1000.1.0.B/.C1)	≈ 1.0
TRC.125	TRE.125	
TRC.F. 125.2000 .1.0	TRE.F.125.2000.1.0	≈ 2.0
TRC.F. 125 . 1800 .1.0*	TRE.F.125.1800.1.0*	≈ 1.8
TRC.F. 125 . 1600 .1.0	TRE.F.125.1600.1.0	≈ 1.6
TRC.F. 125 . 1400 .1.0	TRE.F.125.1400.1.0	≈ 1.4
TRC.F. 125 . 1200 .1.0	TRE.F.125.1200.1.0	≈ 1.2
TRC.F. 125 . 1000 .1.0	TRE.F. 125 . 1000 .1.0	≈ 1.0
*Maximum recommended len	oth for fibre-rod modules	

Universal mounting kit | For TRC·TRE


● Stainless steel angle tube with attachment brackets ● Freely positionable ● The energy supply system can be quickly and easily adapted to new programming sequences of the robot ● With 2 mounting brackets for sizes 40 and 60 - with 3 mounting brackets starting at size 70

Ø	Part No.	Α	В	С	D	Ε	Weight
Index		[mm]	[mm]	[mm]	[mm]	[mm]	[kg]
40.	TR.40.80	74	40	8.4	475	325	3.6
50.	TR.50.80	74	40	8.4	475	325	3.6
60.	TR.60.80	74	40	8.4	625	325	4.7
70.	TR.70.80	75	80	12.6	875	575	5.9
85.	TR.85.80	75	80	12.6	875	575	6.3
100.	TR.100.80	75	80	12.6	875	575	6.3
125.	TR.125.80	75	80	12.6	875	575	8.5


triflex® R accessories


Adjustment units for retraction systems

Adjustment unit for RSP and **RS** retraction systems

The optional adjustment unit is installed between the robot arm and the retraction system, and allows accurate adjustments of the position of the igus® retraction system on the robot arm. Particularly useful for multiple working programs using the same cable package.

Adjustment unit to easily change the position of the retraction system

triflex® R accessories

Adapter consoles for retraction systems

Adapter consoles for RSP, RS and **RSE** retraction systems

The RS and RSP retraction systems provide all widely used drill patterns for attachment: 380 x 70 mm and 490 x 90 mm (in Ø12.5 mm). We also supply a wide range of manufacturer and modeldependent adapter consoles from stock, in order to adapt to other robot variations. For example, many robot models are equipped from the factory with only side-mounted mounting options - in these cases, our adapter product range also supports simple installation of the retraction systems without additional engineering.

Adapter consoles for many robot models, from stock. Product range ▶ next page

Application example with RS system on ABB Series 6600

Product range Adapter consoles for retraction systems from stock

Adapter console	Part No.	Manufacturer	Robot model	Weight [kg]
	TR.907.347	ABB	IRB 6600 IRB 6640 IRB 6650	4.0
	TR.907.468	ABB	IRB 6400	9.8
	TR.907.448	ABB	IRB 4400	5.0
	TR.907.381	ABB	IRB 2400/10 IRB 2400/16	5.2
	TR.907.905	ABB	IRB 6620	2.8
6	TR.908.494	ABB	IRB 4600 IRB 2600	2.9
	TR.907.374	Comau	NH1 130-2.6 NJ 110-3.0 NH3 165-2.7 NJ 110-2.6 SMART5 NJ 165 3.0	4.7
	TR.907.447	Comau	NM 45-2.0 NM 16-3.1	3.4
5	TR.908.493	Comau	Smart six	2.2
	TR.907.327	Yaskawa	UP 20 UP 165 ES 280 MH6 UP 50 ES 165 HP 20 HP 165 UP 130 ES 200 HP 50	3.6
	TR.909.641	Yaskawa	MH50	2.0

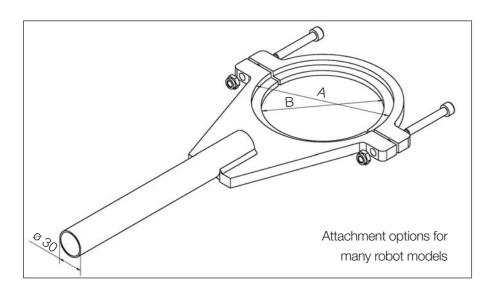
More adapter consoles upon request. CAD data online.

Adapter console	Part No.	Manufacturer	Robot model	Weight [kg]
	TR.911.220	Fanuc	M-710iC 50 M-710iC 70	2.0
	TR.908.973	Fanuc	M-710iB 45	1.1
B. Carrier	TR.907.270	Fanuc	IR-2000iB S 430 R-2000iA S 420 R-1000iA	4.5
1	TR.907.470.12	Fanuc	M-900iA 260L M-900iA 350	6.8
1	TR.907.902.12	Fanuc	M-900iA 600	8.9
B	TR.910.876	Fanuc	M900-IB700	4.6
	TR.907.599	Kuka	KR5 KR6 KR5arc KR16	2.5
	TR.908.113	Kuka	KR-1000	5.2
	TR.908.014	Kuka	KR 60 (HA) KR 30 (HA)	4.3
	TR.907.706	Reis	RV30-26 RV60-26 RV10-16 RV60-40 RV20-16 RV60-60 RV60-16 RV130	4.3
	TR.911.223 Spacer bolt	Kuka	Series Quantec (4 piece kit)	0.6

triflex® R accessories

Clamps for attachment to axis 6

For use with a heavy duty connection, compact connection, and quick release units

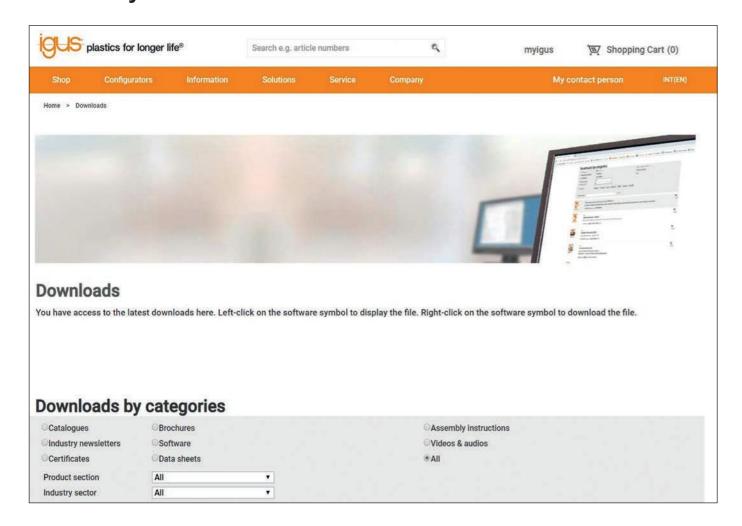

Easy and fast alignment relative to the tool position

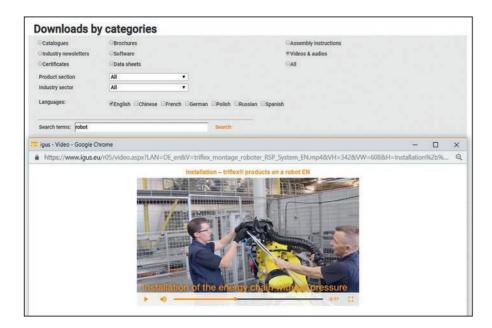
Depending on robot design, with or without recess

Clamps for attachment to axis 6

The clamp is used to attach a mounting bracket to axis 6, with a bar (Ø 30mm) for all robots. They are easy and quick to assemble.

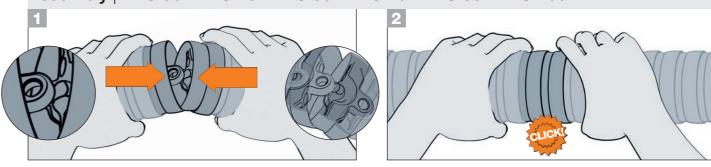
- For use with heavy duty connection TR.XX.20.30 / TR.XX.23.30
- For use with compact connection TR.XX.21.01.30 / TR.XX.21.02.30
- For use with quick exchange unit **TR.XX.22.30**



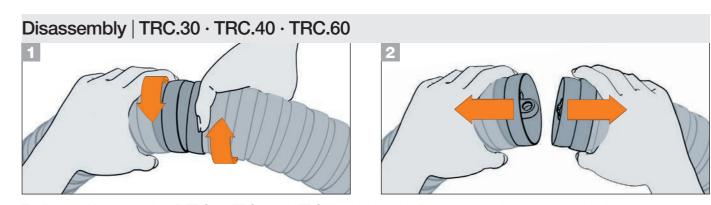

Product range Excerpt from the product range

Part No.	Robot	With	Α	В	Moight
				_	Weight
Clamp	model	recess	[mm]	[mm]	[kg]
TR.907.857	KUKA KR 30-3 (HA)	yes	130	115	1.9
	KUKA KR 60-3 (HA)	yes	130	115	1.9
	KUKA KR 60 L45-3 (HA)	yes	130	115	1.9
	KUKA KR 60 L30-3 (HA)	yes	130	115	1.9
TR.907.901	KUKA Quantec, large flange	yes	205	190	2.5
	KUKA KR 125/3	yes	205	190	2.5
	KUKA KR 150/3	yes	205	190	2.5
	KUKA KR 200/3	yes	205	190	2.5
	KUKA KR 360/1	yes	205	190	2.5
	KUKA KR 500/1	yes	205	190	2.5
	KUKA KR 150/2 Series 2000	yes	205	190	2.5
	KUKA KR 180/2 Series 2000	yes	205	190	2.5
	KUKA KR 210/2 Series 2000	yes	205	190	2.5
TR.908.115	KUKA KR 1000 Titan	yes	250	242	3.05
TR.907.992	Fanuc R-2000iB	yes	165	160	2.4
	Fanuc R-2000iA	yes	165	160	2.4
	Reis RV 130	yes	165	160	2.4
TR.908.065	Fanuc M-710iC 50	yes	130	124	2.2
	Fanuc M-710iC 70	yes	130	124	2.2
TR.909.387	Yaskawa UP 50	yes	125	100	1.9
	Yaskawa HP 50	yes	125	100	1.9
	Yaskawa MH 50	yes	125	100	1.9
TR.910.544	Reis RV60-60	yes	145	125	1.9
	Reis RV60-40	yes	145	125	1.9
	Fanuc R-1000	yes	145	125	1.9
TR.908.347	Stäubli TX200	yes	145	125	1.9
TR.907.667.125	for custom flange	no	125	= A	2.1
TR.907.667.140	KUKA Quantec small flange	no	140	= A	2.2
TR.907.667.142	Hyundai HX 165	no	142	= A	2.25
TR.907.667.150	Comau NJ 130	no	150	= A	2.4
TR.907.667.160	ABB IRB 6400		160	= A	2.45
111.907.007.100	Fanuc S420	no	160	= A	2.45
TR.907.667.180	for custom flange	no	180	= A	2.45
TR.907.667.190	Comau NH3	no	190		2.6
TR.907.667.200	KUKA KR 125/1	no	200	= A	2.7
Th.907.007.200	KUKA KR 150/1	no	200	= A = A	2.7
	KUKA KR 200/1	no	200		2.7
	ABB IRB 6640	no	200	= A	2.7
		no		= A	
	ABB IRB 6620	no	200	= A	2.7
TD 007 667 000	ABB IRB 6650	no	200	= A	2.7
TR.907.667.220	KUKA KR 360-2	no	220	= A	2.82
	KUKA KR 500-2	no	220	= A	2.82
	KUKA KR 360-3	no	220	= A	2.82
	KUKA KR 500-3	no	220	= A	2.82
TR.907.667.250	ABB IRB 7600-340	no	223	= A	3.5
	ABB IRB 7600-500	no	223	= A	3.5
	Fanuc M900iA 350	no	250	= A	3.2
	Fanuc M900iA 260L	no	250	= A	3.2
TR.907.667.275	Fanuc M900iA 200P	no	275	= A	3.4
TR.907.667.315	Fanuc M900iA 600	no	315	= A	3.6
	Fanuc M900iA 400L	no	315	= A	3.6

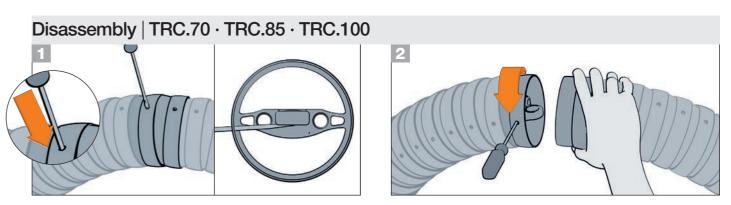
triflex® Rassembly Assembly videos online

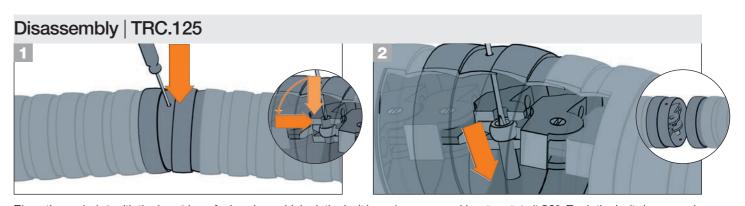

Assembly instruction videos video clips and additional information are available online

www.igus.co.uk/downloads


triflex® R TRC

Assembly instructions


Assembly | TRC.30 · TRC.40 · TRC.60 · TRC.70 · TRC.85 · TRC.100

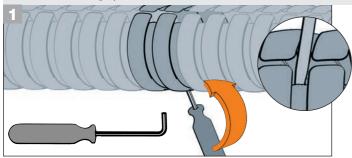

Engage the e-chain® links on the lower side. Use the chamfered side of the ball to open the socket and click together.

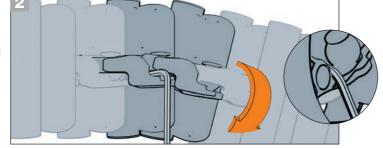
To disassemble, move triflex® R TRC.30, TRC.40 and TRC.60 to the bend radius stop then twist apart counterclockwise.

Bend e-chain® to the radius, press a screwdriver right through the opening marker, insert approx. 5 mm between the ball and socket and using it as a lever, twist apart counterclockwise.

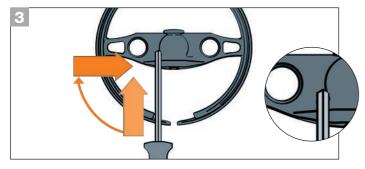
Place the e-chain® with the igus® logo facing down. Unlock the bolt by using a screwdriver to rotate it 90°. Push the bolt downwards to disconnect the e-chain® links for easy separation.

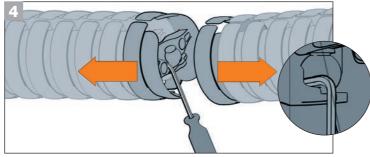
triflex® R TRE.B


Assembly instructions

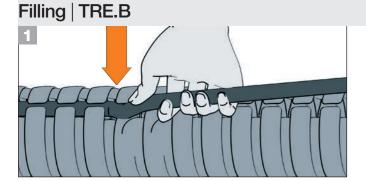

Assembly | TRE.B

Engage the e-chain® links on the lower side to open the socket and slightly rotate the e-chain® links to click together. Push the socket downward onto the ball in a straight motion. An audible "click" can be heard on successful connection.


Disassembly | TRE.B

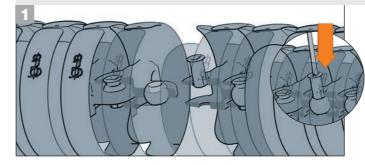


Place disassembly tool into the e-chain®.


Hook the tool between ball and socket.

Once the tool is in place, turn e-chain® counterclockwise by 45°.

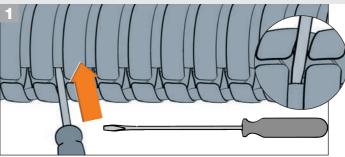
Once the socket has been lifted slightly over the ball head, the e-chain® links can be separated by twisting them.



Very simple filling with "easy" design - simply press cables in... and pull them out.

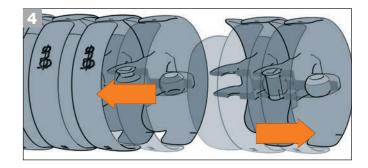
triflex® R TRE.C

Assembly instructions


Assembly | TRE.100.C · TRE.125 · TRC.125

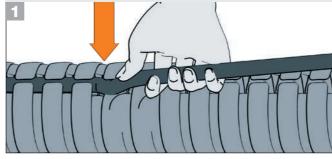
Align e-chain® links and use a screw driver to push the bolt down. Secure the connection bolt by rotating 90°.

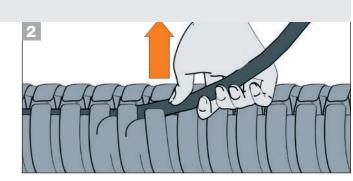
Disassembly | TRE.C



Insert slotted screwdriver into the e-chain® centrally through "easy" slot.

Unlatch bolt by rotating it 90°.

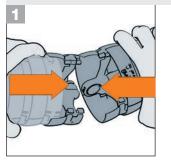


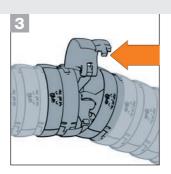


Push bolts through.

Push the bolt downwards to disconnect the e-chain® links for easy separation.

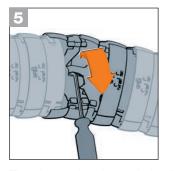
Filling | TRE.C

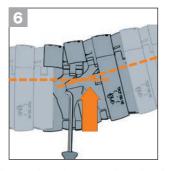

Very simple filling with "easy" design - simply press cables in... and pull them out.

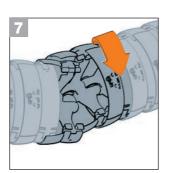

triflex® R TRCF

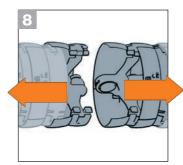
Assembly instructions

Assembly | TRCF

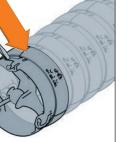


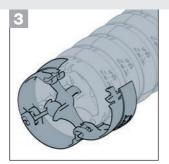

Attach e-chain® parts at an angle and push them together.

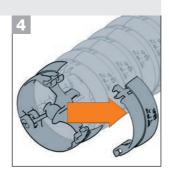

To close, simply snap the opened cover.


Disassembly | TRCF

Using a screwdriver, unlatch the lid of three e-chain® links as marked. Open two lids by gently twisting the e-chain® links from each other. Place disassembly tool between ball and socket.






Then by turning the e-chain® links against the stop given by the disassembly tool - push the socket over the ball. Slightly bend the e-chain®, then turn and pull apart.

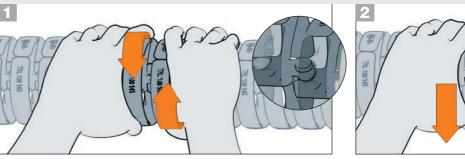
Opening | TRCF

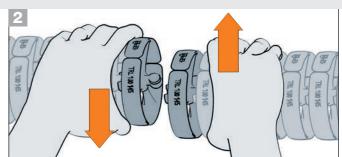
Open the lid with a screwdriver.

The lid can be removed completely in the opened state if required.

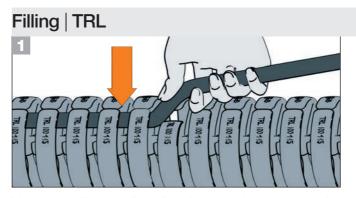
triflex® R TRL

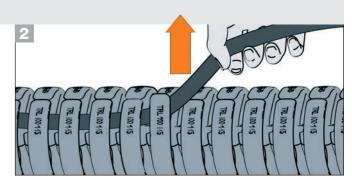
Assembly instructions


Assembly | TRL

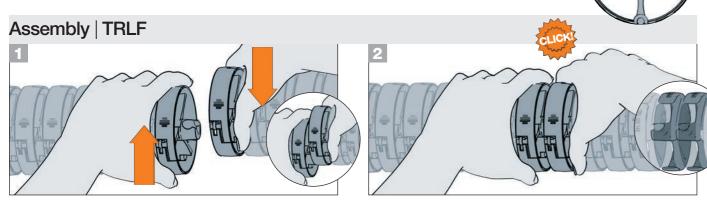


Attach ball with round side over socket.

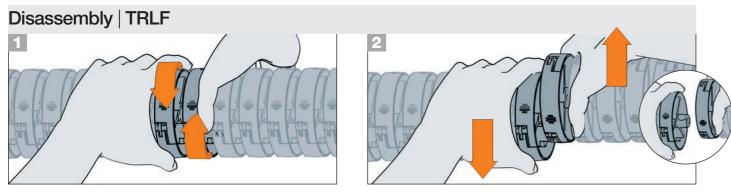

Press the ball into the socket ...


Disassembly | TRL

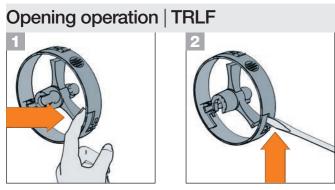
Rotate e-chain® links from one another slightly and push the ball sideways out of the socket.



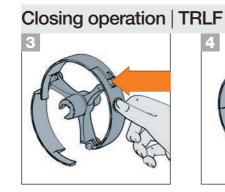
Very simple filling with "easy" design - simply press cables in... and pull them out.


triflex® R TRLF

Assembly instructions

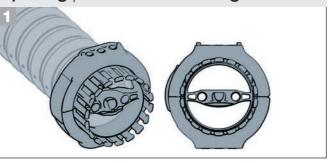


Attach ball with round side over socket.

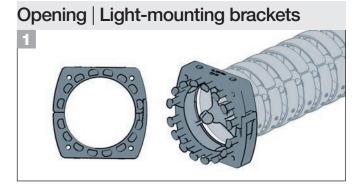

Press ball into the socket.

Rotate e-chain® links from one another slightly and push the ball sideways out of the socket.

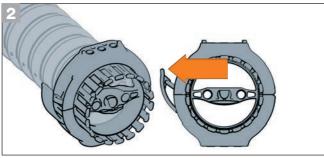
To open, raise the lug by hand or insert a screwdriver into the notch and open.

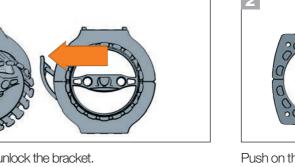


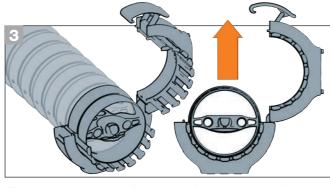
Push the lid until it locks.

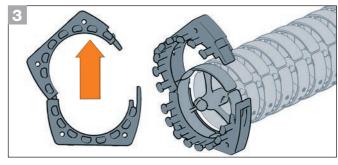

triflex® R Assembly

Assembly instructions mounting bracket & disassembly tool


Opening | Standard-mounting brackets

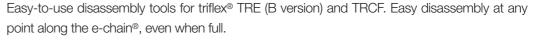

Standard mounting brackets can be opened without tools.


Light mounting brackets can be opened with a screwdriver.


Open the side lever to unlock the bracket.

Push on the smaller inner latch to unlock the bigger outer latch.

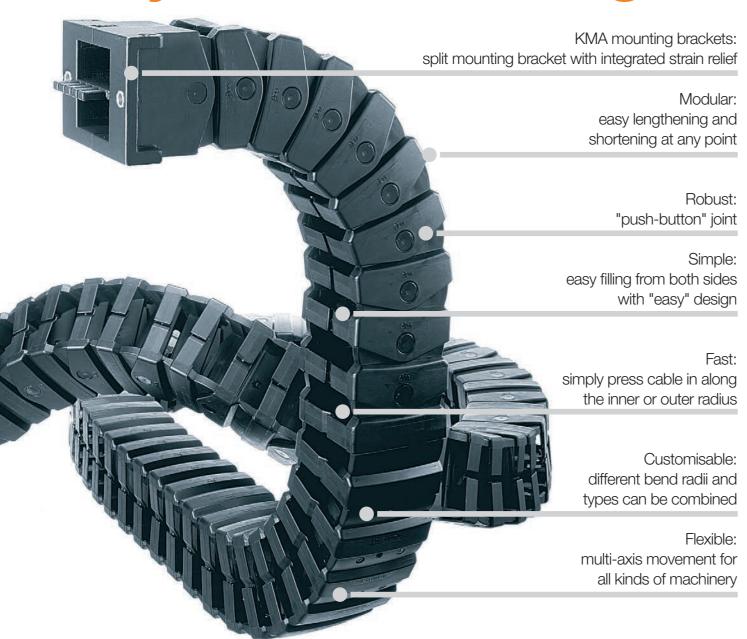
Flip open the mounting bracket and remove the e-chain®.



Flip open the mounting bracket and remove the e-chain®.

Note: for triflex® R Series TRE, TRE.B - TRE.LOCK clips ensure a secure grip by the mounting bracket. Supplied with every mounting bracket.

Disassembly tools


For series	Part No.
TRE.B	disassembly tool
TRE.40.B	MAT0050175
TRE.50.B	MAT0051190
TRE.60.B / TRE.70.B	MAT0051135
TRE.85.B	MAT0050170
TRE.100.B	MAT0050172

For series	Part No.
TRE.B	disassembly tool
TRCF.65	MAT0051135
TRCF.85	MAT0050170
TRCF.100	MAT0050172

easy triflex® advantages

For simple 3D applications, easy filling from both sides - easy triflex®

The easy triflex® series was developed to offer safe energy supply for multi-axis movements. In doing so the flexibility of a hose was combined with the stability and defined bend radius of an e-chain®. With easy triflex® the installation of cables and hoses is simple. With flexible crossbars the cables are simply pushed into the e-chain® from either side. The unique modular range allows very complex movements. For example: Combine 1-axis, 2-axis and 3-axis movement links in one e-chain®

More information ▶ www.igus.co.uk/easytriflex

Selection table

Series	Inner height	Inner width	Outer width	Bend radius	Pitch	igus®
	Bi1 / Bi1 [mm]	Bi3 [mm]	Ba [mm]	R [mm]	[mm]	online

Single-axis movement - "easy" design

easy filling from both sides

www.igus.co.uk/E332	14.5	048 - 200	34	25	13	E332.25
►www.igus.co.uk/E332	25	075 - 250	50	32	17	E332.32
►www.igus.co.uk/E332	30	100 - 250	68	50	26	E332.50
►www.igus.co.uk/E332	36	140 - 300	96	75	38.5	E332.75

Double-axis movement - "easy" design with RBR (Reverse Bend Radius)

easy filling from both sides

E332.25	13	25	34	048 - 200	14.5	►www.igus.co.uk/E332
E332.32	17	32	50	075 - 250	25	►www.igus.co.uk/E332
E332.50	26	50	68	100 - 250	30	►www.igus.co.uk/E332
E332.75	38.5	75	96	140 - 300	36	►www.igus.co.uk/E332

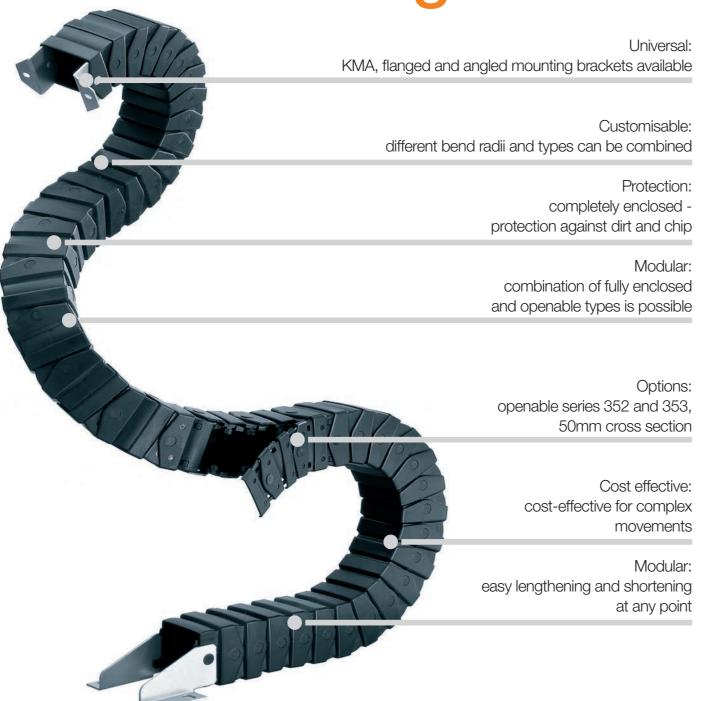
Triple-axis movement - "easy" design with RBR (Reverse Bend Radius)

easy filling from both sides

E333.25	13	25	34	048 - 200	14.5	►www.igus.co.uk/E333
E333.32	17	32	50	075 - 250	25	►www.igus.co.uk/E333
E333.50	26	50	68	100 - 250	30	►www.igus.co.uk/E333
E333.75	38.5	75	96	140 - 300	36	►www.igus.co.uk/E333

The complete range with ordering options,

3D-CAD, configurators, PDFs, application examples ▶ www.igus.co.uk/easytriflex



Available from stock. Ready to ship in 24 - 48hrs.*

The delivery times indicated correspond to the average time until the ordered goods are dispatched.

triflex® advantages

Enclosed for simple multi-axis applications - triflex®

The triflex® series was developed to allow safe energy supply for multi-axis movements. In doing so the flexibility of a hose was combined with the stability and defined bend radius of an e-chain®. The unique, modular product range allows very complex motions. For example it is possible to combine 1-axis, 2-axis and 3-axis movement links in one e-chain®.

Selection table

Series	Inner width	Outer width	Bend radius	Pitch	igus®
	Bi [mm]	Ba [mm]	R [mm]	[mm]	online

Single-axis movement - enclosed

Protection against dirt and swarf

► www.igus.co.uk/332	13.3	038 - 100	26	16	332.16
► www.igus.co.uk/332	25	075 - 250	50	32	332.32
► www.igus.co.uk/332	30	100 - 250	68	50	332.50
► www.igus.co.uk/332	36	140 - 300	96	75	332.75
www.igus.co.uk/352	30	100 - 250	68	50	352.50*

Double-axis movement - enclosed, with RBR (Reverse Bend Radius)

Protection against dirt and swarf

332.16	16	26	038 - 100	13.3	www.igus.co.uk/332
332.32	32	50	075 - 250	25	www.igus.co.uk/332
332.50	50	68	100 - 250	30	www.igus.co.uk/332
332.75	75	96	140 - 300	36	www.igus.co.uk/332
352.50*	50	68	100 - 250	30	www.igus.co.uk/352

Triple-axis movement - enclosed, with RBR (Reverse Bend Radius)

Protection against dirt and swarf

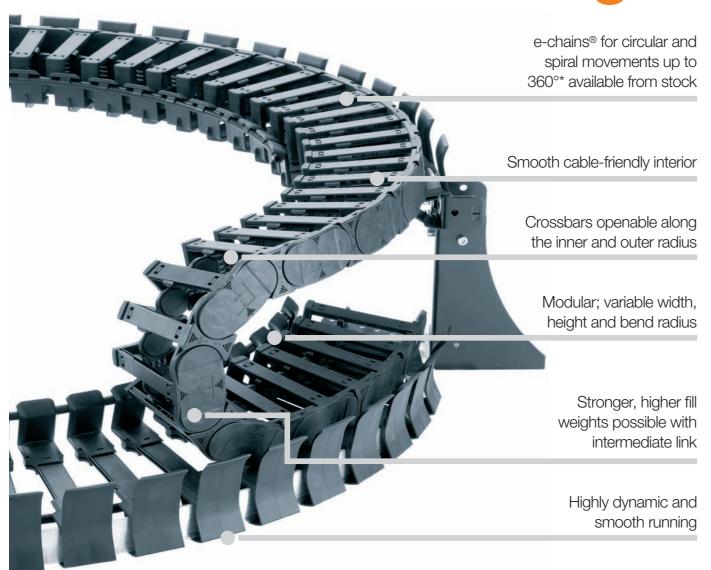
333.16	16	26	038 - 100	13.3	► www.igus.co.uk/333
333.32	32	50	075 - 250	25	► www.igus.co.uk/333
333.50	50	68	100 - 250	30	► www.igus.co.uk/333
333.75	75	96	140 - 300	36	► www.igus.co.uk/333
353.50*	50	68	100 - 250	30	www.igus.co.uk/353

^{*}Series 352/353 openable


Complete product range with ordering options,

3D-CAD, configurators, PDFs, application examples ▶ www.igus.co.uk/triflex

Available from stock. Ready to ship in 24 - 48hrs.*


*The delivery times indicated correspond to the average time until the ordered goods are dispatched.

e-chains for circular & rotary move-ments

twisterchain twisterband Rotating energy supply systems with Reverse Bend Radius (RBR)

twisterchain advantages

Strong, quiet and up to 360°* - circular and spiral movements - twisterchain

The igus® twisterchain product line offers an extensive range of products for circular movement and is available in four sizes. Its modular width and radius design ensures it can be used flexibly in applications with rotary and spiral movements up to 360° and more, with high fill weights and where smooth operation is required. twisterchain applications are available with modular guide troughs which offer: e-chain® guidance, reduced e-chain® wear, optimal levels of smooth operation, angle of rotations up to 360°* from stock.

- Strong, high fill weights, smooth running
- Rotary speeds up to 1m/s and more
- e-chains® for circular/spiral movements up to 360°* available from stock
- Cable-friendly, smooth interior
- Crossbars openable along the inner and outer radius
- Successfully tested for over 1 million cycles in the igus® laboratory

*Up to 540° upon request

e-chains® for circular movements up to 360° available from stock (up to 540° upon request)

UL94-V0 classification

Selection table

Inner width

Inner height

twisterchain

Outer height

For rotary movements up to 360° available from stock; for angle of rotation >360° please contact us. Crossbars removable along the inner and outer radius

Bend radius

R [mm]

Circular radii

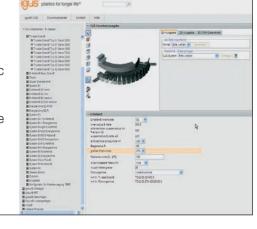
AR [mm]

TC32	32	87.5 - 150	108.5 - 171	54	100 - 250	400 - 600	136
TC42	42	87.5 - 200	110.5 - 223	64	100 - 250	400 - 850	138
TC56	56	125 - 200	155 - 230	84	150 - 400	650 - 850	140

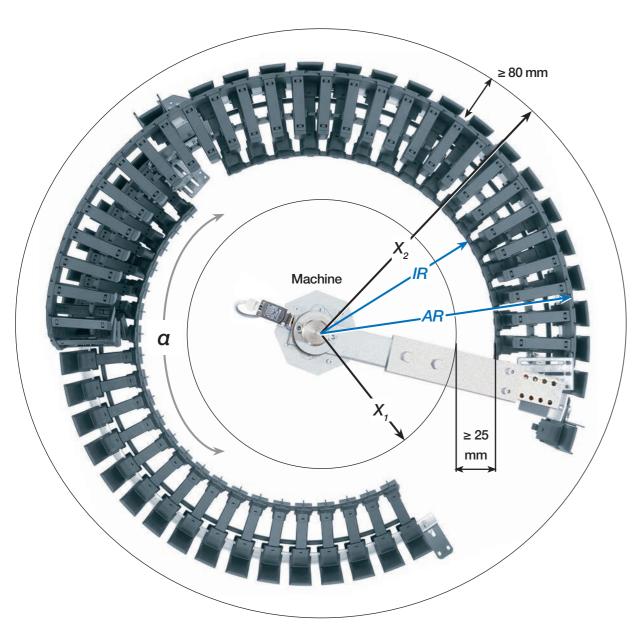
Outer width

The complete range with ordering options,

3D-CAD, configurators, PDFs, application examples ▶ www.igus.co.uk/twisterchain

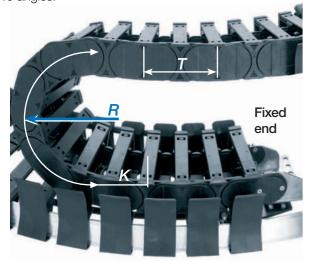

Available from stock. Ready to ship in 24 - 48hrs.*

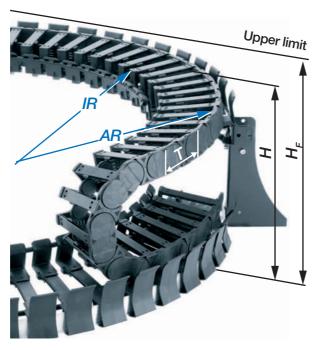
*The delivery times indicated correspond to the average time until the ordered goods are dispatched.


Quickly generate complete twisterchain 3D CAD models

- Get complete 3D models just by inputting the angle of rotation and basic
- Free positioning of the e-chain® moving end along the travel length
- Optional generation of twisterchain as a single part or complete with guide trough and base support
- Fast download of the CAD files without registration
- 11 different 3D and 8 different 2D CAD formats are available

More information ▶ www.igus.co.uk/twister-configurator




twisterchain

twisterchain general information

In the case of machines which rotate in one direction then the other, the total rotation angle required is the sum of the two angles.

Technical data

Technical data

Speed / acceleration upon request

Material - permitted temperature °C, igumid G -40°C / +120°C

Flammability class, igumid G VDE 0304 IIC UL94-HB

Order example | Order key

Order example for complete e-chain® (1.0m), colour black, with mounting brackets:

e-chain® (1.0m) TC56.12.250/650.0 Please indicate e-chain® length or number of links: 1.0m or 11 links

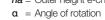
TC5600.34.VS.E + Mounting brackets 1 set

Order text: 1 m TC56.12.250/650.0 + TC5600.34.VS.E

Order key TC56.12.250/650.0 Series Inner height Width index (depends on Bi) Bend radius R Outer radius AR Standard colour black

TC56.12.250/650.0 =

e-chain® openable along the inner radius, from both sides Bi 12 mm inner width, R 250 mm bend radius / AR 650 mm outer radius, colour black


AR = Outer radius of e-chain®

 X_1 = Inner machine limit X_2 = Outer machine limit IR = Inner radius e-chain® R = Bend radius e-chain®

 $H_F = \text{e-chain}^{\otimes} \text{ height incl. 50mm clearance}$

K = Add-on for bend radius

hi = Inner height e-chain® ha = Outer height e-chain®

twisterchain TC32

32 mm inner height - product range

100

254

465

H +20

125

304

550

150

354

620

175

404

700

AR	Bi	Ba	X_2	X_1	R 100 [mm]	R 125 [mm]	R 150 [mm]	R 175 [mm]	R 200 [mm]	R 250 [mm]	TC32
[mm]	[mm]	[mm]	[mm]	[mm]	TC32	TC32	TC32	TC32	TC32	TC32	[kg/m]
400	87.5	108.5	480	270	087.100/400	087.125/400	087.150/400	087.175/400	087.200/400	087.250/400	≈ 1.82
400	100	121	480	250	_	_	10.150/400	10.175/400	10.200/400	10.250/400	≈ 1.90
400	108	129	480	250	_	_	-	11.175/400	11.200/400	11.250/400	≈ 1.95
400	125	146	480	220	_	_	-	12.175/400	12.200/400	12.250/400	≈ 2.05
400	137.5	158.5	480	210	_	-	_	_	_	137.250/400	≈ 2.13
400	150	171	480	200	_	_	_	_	_	15.250/400	≈ 2.21
500	100	121	580	350	10.100/500	10.125/500	10.150/500	10.175/500	10.200/500	10.250/500	≈ 1.90
500	108	129	580	350	_	11.125/500	11.150/500	11.175/500	11.200/500	11.250/500	≈ 1.95
500	125	146	580	320	_	12.125/500	12.150/500	12.175/500	12.200/500	12.250/500	≈ 2.05
500	137.5	158.5	580	310	_	-	137.150/500	137.175/500	137.200/500	137.250/500	≈ 2.13
500	150	171	580	300	_	_	15.150/500	15.175/500	15.200/500	15.250/500	≈ 2.21
600	108	129	680	450	11.100/600	11.125/600	11.150/600	_	_	_	≈ 1.95
600	125	146	680	420	_	12.125/600	12.150/600	12.175/600	12.200/600	12.250/600	≈ 2.05
600	137.5	158.5	680	410	_	137.125/600	137.150/600	137.175/600	137.200/600	137.250/600	≈ 2.13
600	150	171	680	400	_	_	15.150/600	15.175/600	15.200/600	15.250/600	≈ 2.21

200

454

780

250

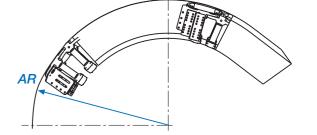
554

940

Pitch [mm/link]

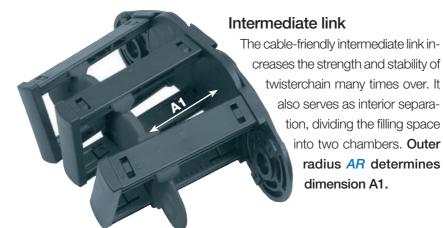
corresponds to [mm]

Links/m

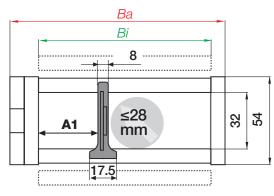

	AIIII	13	
			7
			lill.
- HH			

twisterchain 2nd generation from igus® - successfully tested for over 1 million cycles in the igus® laboratory

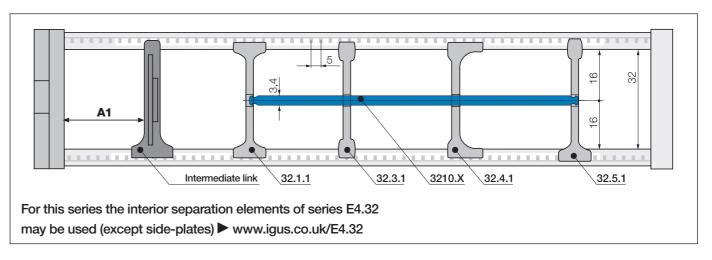
Installation dimensions


Dimension A1 dependent on outer radius AR

AR	R 100	R 125	R 150	R 175	R 200	R 250
[mm]	A1 [mm]					
400	51	51	52	53	53	58
500	65	65	66	67	69	71
600	79	80	81	81	82	85



Dimension A1 always with tolerance of ± 2.5mm


Note: outer radius AR (see drawing) determines dimension A1!

Dimensions

Series TC32 | Interior separation

AR = Outer radius of e-chain® IR = Inner radius e-chain®

 X_1 = Inner machine limit X_2 = Outer machine limit

H = Nominal clearance height K = Add-on for bend radius

56

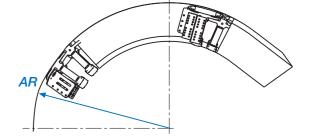
18

1,008

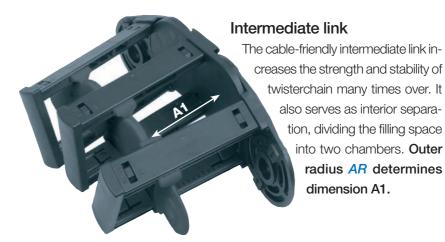
twisterchain TC42

42mm inner height - product range

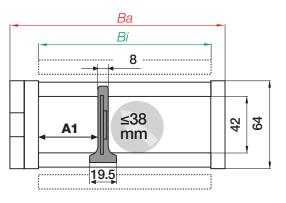
First Firs	AR	Bi	Ва	X ₂	X_1	R 100 [mm]	R 125 [mm]	R 150 [mm]	R 175 [mm]	R 200 [mm]	R 250 [mm]	TC42
Month Mont				_	-							[kg/m]
Mathematics												≈ 1.97
Month Mont												≈ 2.03
125												≈ 2.07
March Marc												≈ 2.16
400												≈ 2.22
												≈ 2.29
400												≈ 2.35
\$\frac{400}{500} \$175 \$198 \$490 \$180 \$-\$												≈ 2.38
500 100 123 580 350 10.100/500 10.125/500 10.150/500 10.175/500 10.200/500 10.250/500 ∞ 500 125 148 580 320 — 11.125/500 11.150/500 11.175/500 11.200/500 12.500/500 12.500/500 12.500/500 12.500/500 12.500/500 12.500/500 12.500/500 12.500/500 12.500/500 12.500/500 12.500/500 12.500/500 12.500/500 12.500/500 137.175/500 137.200/500 137.200/500 15.200/500												≈ 2.41
500 188 181 880 350 - 11.125/500 11.150/500 11.250/500 12.200/500 11.250/500 2 500 137.5 180.5 880 320 - 12.125/500 12.150/500 12.175/500 12.200/500 12.250/500 12.50/500 12.150/500 12.175/500 12.200/500 12.200/500 12.200/500 12.200/500 12.200/500 12.200/500 15.200/500 15.200/500 15.200/500 15.200/500 15.200/500 15.200/500 15.200/500 15.200/500 17.200/500 17.200/500 17.200/500 17.200/500 17.200/500 17.200/500 18.250/500 18.200/500 18.250/500 18.200/500 18.250/500 18.250/500 18.200/500 18.250/500 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>10 125/500</th><th>10 150/500</th><th>10 175/500</th><th>10.200/500</th><th></th><th>≈ 2.03</th></t<>							10 125/500	10 150/500	10 175/500	10.200/500		≈ 2.03
500 125 148 80 320 − 12,125/500 12,150/500 12,175/500 12,200/500 12,200/500 12,250/500 − 500 180 173 180,5 80 310 − − 15,150/500 13,175/500 13,200/500 15,250/500 25,000/500 15,250/500 25,000/500 15,250/500 25,000/500 15,250/500 25,000/500 15,250/500 26,000/500 162,250/500 26,000/500 162,250/500 26,000/500 18,250/500 26,000/500 18,250/500 20,000/500 18,250/500 20,000/500 18,250/500 20,000/500 18,250/500 20,000/500 18,250/500 20,000/500 18,250/500 20,000/500 18,250/500 20,000/500 18,250/500 20,000/500 18,250/500 20,000/500 18,250/500 20,000/500 18,250/500 20,000/500 18,250/500 20,000/500 18,250/500 20,000/500 18,250/500 20,000/500 18,250/500 20,000/500 18,250/500 20,000/500 18,250/500 20,000/500 18,250/500 20,000/500 <th></th> <th>≈ 2.07</th>												≈ 2.07
500						_						≈ 2.16
500 150 173 580 300 - - 15.150/500 15.175/500 15.200/500 15.250/500 ≈ 500 168 191 580 290 - - - 162.150/500 162.175/500 162.200/500 162.250/500 ≈ 500 187 198 580 280 - - - -						_						≈ 2.22
500 162.5 185.5 580 290 - - 162.150/500 162.200/500 162.200/500 27.250/500 ≈ 500 175 198 580 280 - - - - 18.200/500 18.250/500 ≈ 500 187.5 198 580 280 - - - - 187.200/500 182.50/500 ≈ 500 187.5 210.5 580 280 - - - - 20.200/500 187.250/500 ≈ 600 108 131 680 450 11.100/600 11.125/600 11.150/600 12.175/600 12.200/600 12.250/600 ≈ 600 125 148 680 420 15.100/600 12.150/600 12.175/600 12.200/600 12.250/600 ≈ 600 150 173 680 400 15.100/600 15.150/600 15.175/600 15.200/600 15.200/600 162.250/600 ≈ 16						_	_					≈ 2.29
500 168 191 580 290 - - - 17.175/500 17.200/500 17.250/500 ≈ 500 175 198 580 280 - - - - 18.200/500 ≈ 500 200 223 580 280 - - - - 18.7200/500 20.250/500 ≈ 600 108 131 680 450 11.100/600 11.160/600 11.175/600 11.200/600 - ≈ 600 125 148 680 420 12.100/600 12.156/600 12.175/600 12.200/600 12.250/600 20.200/600 12.200/600 12.200/600 12.200/600 12.200/600 12.200/600 12.200/600 13.7156/600 15.175/600 15.200/600 13.7250/600 20.200/600 13.7250/600 20.200/600 15.200/600 15.250/600 20.200/600 15.200/600 15.250/600 20.200/600 15.250/600 20.200/600 15.250/600 20.200/600 15.250/600						_	_					≈ 2.35
500 175 198 580 280 − − − − 18.200/500 ≥ 28.0 − − − − 18.200/500 ≥ 20.250/500 ≥ 500 200 223 580 250 − − − − 20.200/500 20.250/500 ≈ 600 108 131 680 450 11.100/600 11.155/600 11.150/600 11.175/600 11.200/600 − ≈ 600 125 148 680 420 12.100/600 12.125/600 12.150/600 12.175/600 12.200/600 12.250/600 ≈ 600 150 173 680 400 15.100/600 15.150/600 15.150/600 15.200/600 15.200/600 15.200/600 15.200/600 15.200/600 15.200/600 15.200/600 15.200/600 15.200/600 15.200/600 15.200/600 162.200/600 162.250/600 20.150/600 162.150/600 162.150/600 162.150/600 162.150/600 162.150/600 162.150/600 162.150/						_	_					≈ 2.38
500 187.5 210.5 580 280 − − − − 20.200/500 187.250/500 ≈ 500 200 223 580 250 − − − 20.200/500 20.250/500 ≈ 600 125 148 680 420 12.100/600 12.156/600 12.157/600 12.175/600 12.200/600 12.250/600 ≈ 600 137.5 160.5 680 410 137.100/600 137.150/600 137.157/600 137.250/600 12.200/600 12.200/600 12.250/600 ≈ 600 150 173 680 400 15.100/600 15.156/600 15.175/600 137.250/600 137.250/600 15.250/600 15.250/600 15.250/600 15.156/600 15.175/600 15.200/600 15.250/600 ≈ 600 162.156/600 162.156/600 162.156/600 162.156/600 162.156/600 162.156/600 162.156/600 17.250/600 17.250/600 17.250/600 17.250/600 17.250/600 17						_						≈ 2.41
500 200 223 580 250 − − − 20.200/500 20.250/500 ≈ 600 108 131 680 450 11.100/600 11.125/600 11.150/600 11.175/600 11.200/600 − ≈ 600 137.5 180.5 680 410 137.100/600 137.156/600 137.156/600 137.156/600 137.250/600 ≈ 600 150 173 680 400 15.100/600 15.156/600 15.156/600 15.756/600 15.200/600 15.250/600 ≈ 600 162.1585.5 680 390 − 162.156/600 162.150/600 162.175/600 162.200/600 162.250/600 ≈ 600 175 198 680 380 − − 18.160/600 18.715/600 18.200/600 18.250/600 ≈ 600 187.5 198 680 380 − − 20.150/600 18.715/600 18.720/600 18.7250/600 ≈						_	_	_	_			≈ 2.48
600 108 131 680 450 11.100/600 11.125/600 11.150/600 11.175/600 11.200/600 = 600 125 148 680 420 12.100/600 12.125/600 12.150/600 12.150/600 12.175/600 12.200/600 12.250/600 = 600 137.5 160.5 680 410 137.100/600 137.155/600 137.150/600 137.150/600 137.250/600 15.00/600 15.00/600 15.155/600 15.155/600 15.155/600 15.155/600 15.200/600 15.250/600 15.250/600 15.250/600 15.250/600 15.250/600 15.250/600 15.250/600 162.150/600 162.150/600 162.250/600 162.250/600 162.250/600 162.250/600 162.250/600 162.250/600 162.250/600 17.200/600 17.250/600 17.250/600 17.250/600 18.250/650 18.250/750 18.250/750 18.250/750 18.250/750 18.250/750 18.250/750 18.250/750 18.250/750 18.250/750 18.250/750 18.250/750 18.250/750 18.250/750 18.250/750 18.250/750 18.250/750 18.250/750 18.						_	_	_	_			≈ 2.54
600 125 148 680 420 12.100/600 12.125/600 12.150/600 12.175/600 12.200/600 12.250/600 ≈ 600 137.5 160.5 680 410 137.100/600 137.125/600 137.150/600 137.150/600 137.200/600 137.250/600 ≈ 600 150.173 680 400 15.100/600 15.15/600 15.15/600 15.15/600 15.200/600 15.200/600 15.200/600 15.200/600 162.250/600 ≈ 600 162.5 185.5 680 390 − 162.125/600 162.150/600 162.150/600 162.200/600 162.250/600 ≈ 600 168 191 680 390 − − 17.150/600 17.175/600 17.200/600 182.250/600 ≈ 600 17.5 198 680 380 − − 187.150/600 187.175/600 182.200/600 182.250/600 ≈ 600 187.5 210.5 680 380 − − 187.150/600 187.175/600 187.200/600 187.250/600 ≈ 600 187.5 210.5 680 380 − − − 20.150/600 20.150/600 20.200/600 20.250/600 ≈ 650 125 148 730 470 12.100/650 12.125/650 12.150/650 12.150/650 12.200/650 12.250/650 ≈ 650 137.5 160.5 730 460 137.100/650 137.125/650 137.150/650 137.150/650 12.200/650 12.250/650 ≈ 650 150.173 730 450 15.100/650 15.125/650 15.150/650 15.175/650 15.200/650 15.250/650 ≈ 650 162.5 185.5 730 440 − 162.125/650 15.150/650 15.150/650 15.175/650 15.200/650 15.250/650 ≈ 650 162.5 185.5 730 440 − 162.125/650 15.150/650 15.175/650 15.200/650 15.250/650 ≈ 650 168 191 730 430 − 17.125/650 17.150/650 15.175/650 162.200/650 162.250/650 ≈ 650 168.5 187.5 210.5 730 440 − 162.125/650 17.150/650 18.175/650 18.200/650 162.250/650 ≈ 650 187.5 210.5 730 420 − 18.150/650 17.150/650 18.175/650 18.200/650 18.250/650 ≈ 650 187.5 210.5 730 420 − − 18.150/650 18.175/650 18.200/650 18.250/650 ≈ 650 187.5 210.5 730 420 − − 18.150/650 18.175/650 18.200/650 18.250/650 ≈ 650 187.5 210.5 830 560 137.100/750 137.125/750 15.125/750 15.175/750 182.200/750 18.250/750 ≈ 750 162.5 185.5 830 540 − 17.125/750 15.125/750 15.150/750 15.175/750 15.200/750 15.250/750 ≈ 750 162.5 185.5 830 540 − 18.150/750 15.125/750 15.150/750 15.150/750 15.250/750 ≈ 750 162.5 185.5 830 540 − 18.150/750 15.125/750 15.150/750 15.150/750 15.250/750 ≈ 750 162.5 185.5 830 540 − 18.150/750 15.125/750 17.150/750 15.150/750 15.250/750 ≈ 750 162.5 185.5 830 540 − 18.150/750 15.125/750 15.150/750 1						11.100/600	11.125/600	11.150/600	11.175/600		_	≈ 2.07
600 150 173 680 410 137.100/600 15.125/600 15.150/600 15.175/600 15.200/600 15.250/600 ≈ 600 150 173 680 400 15.100/600 15.125/600 15.150/600 15.175/600 15.200/600 15.250/600 ≈ 600 162.5 185.5 680 390 − 162.125/600 162.150/600 162.150/600 17.175/600 17.200/600 162.250/600 ≈ 600 168 191 680 390 − − 18.150/600 17.175/600 17.200/600 18.200/600 18.250/600 ≈ 600 175 198 680 380 − − 18.150/600 18.175/600 18.200/600 18.250/600 ≈ 600 187.5 210.5 680 380 − − 18.150/600 187.175/600 187.200/600 18.250/600 ≈ 600 187.5 210.5 680 380 − − − 18.7150/600 20.175/600 20.200/600 20.250/600 ≈ 650 125 148 730 470 12.100/650 12.125/650 12.150/650 12.150/650 12.200/650 12.250/650 ≈ 650 125 185.5 730 440 − − 162.125/650 137.150/650 137.150/650 15.200/650 15.250/650 ≈ 650 162.5 185.5 730 440 − 162.125/650 162.150/650 162.175/650 15.200/650 15.250/650 ≈ 650 175 198 730 430 − 17.125/650 17.150/650 18.175/650 15.200/650 15.250/650 ≈ 650 187.5 120.5 730 420 − − 18.150/650 18.175/650 18.200/650 18.250/650 ≈ 650 187.5 120.5 730 420 − − 18.150/650 18.175/650 18.200/650 18.250/650 ≈ 650 187.5 120.5 730 420 − − 18.150/650 18.175/650 18.200/650 18.250/650 ≈ 650 187.5 210.5 730 420 − − 18.150/650 18.7150/650 18.7150/650 18.250/650 ≈ 650 187.5 210.5 730 420 − − 18.150/650 18.7150/650 18.250/650 ≈ 650 187.5 210.5 730 420 − − 18.150/650 18.7150/650 187.150/650 18.250/650 ≈ 750 137.5 160.5 830 560 137.100/750 137.125/750 137.150/750 137.150/750 137.200/750 137.250/750 ≈ 750 12.5 188.5 830 540 − 162.125/750 15.150/750 15.150/750 15.200/750 15.250/750 ≈ 750 162.5 185.5 330 540 − 162.125/750 15.150/750 15.150/750 15.100/750 15.250/750 ≈ 750 162.5 185.5 330 540 − 162.125/750 18.150/750 18.150/750 18.7150/750 18.250/750 ≈ 750 185.5 330 540 − 162.125/750 18.150/750 18.150/750 18.7150/750 18.250/750 ≈ 750 185.5 330 540 − 18.152/750 18.150/750 18.150/750 18.7150/750 18.250/750 ≈ 750 185.5 330 540 − 18.152/750 18.150/750 18.150/750 18.7150/750 18.250/750 ≈ 750 185.5 330 540 − 18.250/750 18.150/750 18.150/750 18.7150/750 18.250/750 ≈ 750 185.5 330 540 − 18.250											12.250/600	≈ 2.16
600 150 173 680 400 15.100/600 15.125/600 15.150/600 15.175/600 15.200/600 15.250/600 = 600 162.5 185.5 680 390 - 162.125/600 162.150/600 162.175/600 162.200/600 162.250/600 ≈ 600 181 191 680 390 181.50/600 187.550/600 187.50/600 187.550/600 187.5 198 680 380 187.150/600 187.550/600 187.50/600 187.550/600 ≈ 600 187.5 210.5 680 380 187.150/600 187.175/600 187.200/600 187.550/600 ≈ 600 187.5 210.5 680 380 20.150/600 20.175/600 20.200/600 187.550/600 ≈ 600 200 223 680 350 20.150/600 12.150/650 12.175/650 12.200/650 12.250/650 ≈ 650 125 148 730 470 12.100/650 12.125/650 12.150/650 12.175/650 12.200/650 12.250/650 ≈ 650 137.5 160.5 730 460 137.100/650 15.125/650 15.150/650 15.175/650 137.200/650 137.250/650 ≈ 650 162.5 185.5 730 440 - 162.1256/650 15.150/650 15.175/650 15.200/650 15.250/650 ≈ 650 162.5 185.5 730 440 - 162.1256/650 162.150/650 162.175/650 162.200/650 15.250/650 ≈ 650 187.5 198 730 430 - 17.125/650 17.150/650 18.175/650 18.200/650 18.250/650 ≈ 650 187.5 198 730 430 - 17.125/650 17.150/650 18.175/650 18.200/650 18.250/650 ≈ 650 187.5 198 730 420 187.150/650 187.150/650 187.200/650 18.250/650 ≈ 650 187.5 198 730 420 187.150/650 187.150/650 187.200/650 18.250/650 ≈ 650 187.5 198 730 420 187.150/650 187.150/650 187.200/650 18.250/650 ≈ 750 137.5 160.5 830 560 137.100/750 137.125/750 137.150/750 137.150/750 137.200/750 137.250/650 ≈ 750 137.5 160.5 830 560 137.100/750 137.152/750 137.150/750 137.150/750 137.200/750 15.250/750 ≈ 750 162.5 185.5 830 540 - 162.150/750 15.125/750 15.150/750 137.150/750 137.200/750 15.250/750 ≈ 750 188.5 198 830 530 - 18.250/750 187.150/750 187.150/750 187.200/750 187.250/750 187.												≈ 2.22
600 162.5 185.5 680 390 - 162.125/600 162.150/600 162.175/600 162.200/600 162.250/600 ≈ 600 175 198 680 380 181.50/600 181.75/600 181.200/600 181.250/600 ≈ 600 187.5 198 680 380 181.50/600 181.75/600 181.200/600 181.250/600 ≈ 600 187.5 198 680 380 181.50/600 187.150/600 187.250/600 ≈ 600 187.5 198 680 380 20.150/600 20.175/600 187.200/600 187.250/600 ≈ 600 187.5 148 730 470 12.100/650 12.125/650 12.150/650 20.175/600 12.200/600 187.250/600 ≈ 650 125 148 730 470 12.100/650 12.125/650 12.150/650 12.175/650 12.200/650 12.250/650 ≈ 650 137.5 160.5 730 460 137.100/650 137.125/650 12.150/650 137.150/650 137.200/650 137.250/650 ≈ 650 162.5 185.5 730 440 - 162.125/650 15.150/650 15.150/650 15.150/650 15.200/650 15.250/650 ≈ 650 162.5 185.5 730 440 - 162.125/650 162.150/650 162.175/650 162.200/650 15.250/650 ≈ 650 168 191 730 430 - 17.125/650 17.150/650 18.175/650 18.200/650 182.250/650 ≈ 650 187.5 210.5 730 430 - 17.125/650 17.150/650 18.175/650 18.200/650 18.250/650 ≈ 650 187.5 210.5 730 420 - 187.5 187.5 188.5 730 420 - 187.5 187.5 188.5 730 420 - 187.5 187.5 188.5 730 420 - 20.150/650 187.150/650 187.150/650 187.200/650 187.250/650 ≈ 650 137.5 160.5 830 560 137.100/750 137.125/750 137.150/650 137.150/650 187.200/650 187.250/650 ≈ 750 137.5 160.5 830 560 137.100/750 137.1250/750 137.150/750 137.150/750 137.200/750 137.250/750 ≈ 750 162.5 185.5 830 540 - 162.125/750 15.150/750 15.150/750 15.200/750 15.250/750 162.250/750 162.250/750 162.250/750 188 191 830 540 - 17.125/750 15.150/750 162.157/750 182.200/750 182.500/750 187.500/750												≈ 2.29
600 168 191 680 390 - - 17.150/600 17.175/600 17.200/600 17.250/600 ≈ 600 175 198 680 380 - - 18.150/600 18.175/600 18.200/600 18.250/600 ≈ 600 187.5 210.5 680 380 - - 187.150/600 187.157/600 187.200/600 187.250/600 ≈ 600 200 223 680 350 - - 20.150/600 20.175/600 187.200/650 187.250/600 ≈ 650 125 148 730 470 12.100/650 137.150/650 137.150/650 12.175/650 12.200/650 12.250/650 ≈ 650 150 173 730 450 15.100/650 15.150/650 15.175/650 15.200/650 15.250/650 ≈ 650 162.5 185.5 730 440 - 162.125/650 162.150/650 18.175/650 17.175/650 17												≈ 2.35
600 175 198 680 380 - - 18.150/600 18.175/600 18.200/600 18.250/600 = 600 187.5 210.5 680 380 - - 187.150/600 187.175/600 187.200/600 187.250/600 ≈ 600 200 223 680 350 - - 20.150/600 20.175/600 20.200/600 20.250/600 ≈ 650 125 148 730 470 12.100/650 12.125/650 12.150/650 12.175/650 12.200/650 12.250/650 ≈ 650 150 173 730 450 15.100/650 15.155/650 15.150/650 15.175/650 15.200/650 15.250/650 ≈ 650 162.5 188.5 730 440 - 162.125/650 162.150/650 162.175/650 15.175/650 15.200/650 15.250/650 ≈ 650 168 191 730 430 - 17.125/650 17.150/650						_						≈ 2.38
600 187.5 210.5 680 380 - - 187.150/600 187.175/600 187.200/600 187.250/600 ≈ 600 200 223 680 350 - - 20.150/600 20.175/600 20.200/600 20.250/600 ≈ 650 125 148 730 470 12.100/650 12.125/650 12.150/650 12.175/650 12.200/650 12.250/650 2 650 137.5 160.5 730 460 137.100/650 15.150/650 137.150/650 137.150/650 137.250/650 137.250/650 137.150/650 137.150/650 137.250/650 15.250/650 2 650 150 173 730 440 - 162.152/650 162.150/650 162.175/650 162.200/650 15.250/650 ≈ 650 168 191 730 430 - - 187.150/650 18.175/650 18.200/650 18.250/650 ≈ 650 187.5 210.5 730						_	_					≈ 2.41
600 200 223 680 350 - - 20.150/600 20.200/600 20.200/600 20.250/600 ≈ 650 125 148 730 470 12.100/650 12.125/650 12.150/650 12.175/650 12.200/650 12.200/650 12.200/650 12.200/650 12.200/650 12.200/650 12.200/650 12.200/650 12.200/650 12.200/650 12.200/650 137.200/650 137.200/650 137.200/650 137.200/650 137.200/650 137.200/650 137.200/650 15.200/650 18.200/650 18.200/650 18.200/650 18.200/650						_	_					≈ 2.48
650 137.5 160.5 730 460 137.100/650 137.125/650 137.150/650 137.175/650 137.200/650 137.250/650 ≈ 650 150 173 730 450 15.100/650 15.125/650 15.150/650 15.175/650 15.200/650 15.250/650 ≈ 650 162.5 185.5 730 440 — 162.125/650 162.150/650 162.175/650 162.200/650 162.250/650 ≈ 650 168 191 730 430 — 17.125/650 17.150/650 17.175/650 17.200/650 17.250/650 ≈ 650 175 198 730 430 — — 18.150/650 18.175/650 18.200/650 18.250/650 ≈ 650 187.5 210.5 730 420 — — 187.150/650 187.175/650 187.200/650 187.250/650 ≈ 650 200 223 730 400 — — 20.150/650 20.175/650 </th <th>600</th> <th>200</th> <th>223</th> <th>680</th> <th>350</th> <th>_</th> <th>_</th> <th>20.150/600</th> <th>20.175/600</th> <th>20.200/600</th> <th>20.250/600</th> <th>≈ 2.54</th>	600	200	223	680	350	_	_	20.150/600	20.175/600	20.200/600	20.250/600	≈ 2.54
650 137.5 160.5 730 460 137.100/650 137.125/650 137.150/650 137.175/650 137.200/650 137.250/650 ≈ 650 150 173 730 450 15.100/650 15.125/650 15.150/650 15.175/650 15.200/650 15.250/650 ≈ 650 162.5 185.5 730 440 — 162.125/650 162.150/650 162.175/650 162.200/650 162.250/650 ≈ 650 168 191 730 430 — 17.125/650 17.150/650 17.175/650 17.200/650 17.250/650 ≈ 650 175 198 730 430 — — 18.150/650 18.175/650 18.200/650 18.250/650 ≈ 650 187.5 210.5 730 420 — — 187.150/650 187.175/650 187.200/650 187.250/650 ≈ 650 200 223 730 400 — — 20.150/650 20.175/650 </th <th>650</th> <th>125</th> <th>148</th> <th>730</th> <th>470</th> <th>12.100/650</th> <th>12.125/650</th> <th>12.150/650</th> <th>12.175/650</th> <th>12.200/650</th> <th>12.250/650</th> <th>≈ 2.16</th>	650	125	148	730	470	12.100/650	12.125/650	12.150/650	12.175/650	12.200/650	12.250/650	≈ 2.16
650 162.5 730 440 - 162.125/650 162.150/650 162.175/650 162.200/650 162.250/650 ≈ 650 168 191 730 430 - 17.125/650 17.150/650 17.175/650 17.200/650 ≈ 650 175 198 730 430 - - 18.150/650 18.175/650 18.200/650 18.250/650 ≈ 650 187.5 210.5 730 420 - - 187.150/650 187.175/650 187.200/650 187.250/650 ≈ 650 200 223 730 400 - - 20.150/650 20.175/650 20.200/650 20.250/650 ≈ 750 137.5 160.5 830 560 137.100/750 15.125/750 137.150/750 137.175/750 137.200/750 137.250/750 ≈ 750 162.5 185.5 830 540 - 162.125/750 162.150/750 162.175/750 162.175/750 162.175/7	650	137.5	160.5	730	460	137.100/650	137.125/650	137.150/650			137.250/650	≈ 2.22
650 162.5 730 440 - 162.125/650 162.150/650 162.175/650 162.200/650 162.250/650 ≈ 650 168 191 730 430 - 17.125/650 17.150/650 17.175/650 17.200/650 ≈ 650 175 198 730 430 - - 18.150/650 18.175/650 18.200/650 18.250/650 ≈ 650 187.5 210.5 730 420 - - 187.150/650 187.175/650 187.200/650 187.250/650 ≈ 650 200 223 730 400 - - 20.150/650 20.175/650 20.200/650 20.250/650 ≈ 750 137.5 160.5 830 560 137.100/750 15.125/750 137.150/750 137.175/750 137.200/750 137.250/750 ≈ 750 162.5 185.5 830 540 - 162.125/750 162.150/750 162.175/750 162.175/750 162.175/7	650	150	173	730	450	15.100/650	15.125/650	15.150/650	15.175/650	15.200/650	15.250/650	≈ 2.29
650 175 198 730 430 - - 18.150/650 18.175/650 18.200/650 18.250/650 ≈ 650 187.5 210.5 730 420 - - 187.150/650 187.175/650 187.200/650 187.250/650 ≈ 650 200 223 730 400 - - 20.150/650 20.175/650 20.200/650 20.250/650 ≈ 750 137.5 160.5 830 560 137.100/750 137.125/750 137.150/750 137.175/750 137.200/750 137.250/750 ≈ 750 150 173 830 540 - 162.125/750 15.150/750 15.175/750 15.200/750 15.250/750 ≈ 750 168 191 830 540 - 17.125/750 17.150/750 162.175/750 162.175/750 162.175/750 17.175/750 17.200/750 17.250/750 ≈ 750 175 198 830 520 - <t< th=""><th>650</th><th>162.5</th><th>185.5</th><th>730</th><th>440</th><th>_</th><th>162.125/650</th><th>162.150/650</th><th>162.175/650</th><th>162.200/650</th><th>162.250/650</th><th>≈ 2.35</th></t<>	650	162.5	185.5	730	440	_	162.125/650	162.150/650	162.175/650	162.200/650	162.250/650	≈ 2.35
650 187.5 210.5 730 420 - - 187.150/650 187.175/650 187.200/650 187.250/650 ≈ 650 200 223 730 400 - - 20.150/650 20.175/650 20.200/650 20.250/650 ≈ 750 137.5 160.5 830 560 137.100/750 137.125/750 137.150/750 137.175/750 137.200/750 137.250/750 ≈ 750 150 173 830 550 15.100/750 15.125/750 15.150/750 15.175/750 15.200/750 15.250/750 ≈ 750 162.5 185.5 830 540 - 162.125/750 162.150/750 162.175/750 162.200/750 162.250/750 ≈ 750 168 191 830 530 - 18.125/750 18.150/750 18.175/750 17.175/750 17.200/750 18.250/750 ≈ 750 187.5 210.5 830 520 - 187.125/750 <t< th=""><th>650</th><th>168</th><th>191</th><th>730</th><th>430</th><th>_</th><th>17.125/650</th><th>17.150/650</th><th>17.175/650</th><th>17.200/650</th><th>17.250/650</th><th>≈ 2.38</th></t<>	650	168	191	730	430	_	17.125/650	17.150/650	17.175/650	17.200/650	17.250/650	≈ 2.38
650 200 223 730 400 - - 20.150/650 20.175/650 20.200/650 20.250/650 ≈ 750 137.5 160.5 830 560 137.100/750 137.125/750 137.150/750 137.175/750 137.200/750 137.250/750 ≈ 750 150 173 830 550 15.100/750 15.125/750 15.150/750 15.175/750 15.200/750 15.250/750 ≈ 750 162.5 185.5 830 540 - 162.125/750 162.150/750 162.175/750 162.200/750 162.250/750 ≈ 750 168 191 830 530 - 18.125/750 18.150/750 18.175/750 18.200/750 18.250/750 ≈ 750 187.5 210.5 830 520 - 187.125/750 187.150/750 187.175/750 187.200/750 187.250/750 ≈ 750 187.5 210.5 830 520 - 187.125/750 187.150/750	650	175	198	730	430	_	_	18.150/650	18.175/650	18.200/650	18.250/650	≈ 2.41
750 137.5 160.5 830 560 137.100/750 137.125/750 137.150/750 137.175/750 137.200/750 137.250/750 ≈ 750 150 173 830 550 15.100/750 15.125/750 15.150/750 15.175/750 15.200/750 15.250/750 ≈ 750 162.5 185.5 830 540 - 162.125/750 162.150/750 162.175/750 162.200/750 162.200/750 162.250/750 ≈ 750 168 191 830 540 - 17.125/750 17.150/750 17.175/750 17.200/750 17.250/750 ≈ 750 175 198 830 530 - 187.125/750 187.150/750 187.175/750 187.200/750 187.250/750 ≈ 750 187.5 210.5 830 520 - 187.125/750 187.150/750 187.175/750 187.200/750 187.250/750 ≈ 750 200 223 830 500 - 20.125	650	187.5	210.5	730	420	_	_	187.150/650	187.175/650	187.200/650	187.250/650	≈ 2.48
750 150 173 830 550 15.100/750 15.125/750 15.150/750 15.175/750 15.200/750 15.250/750 ≈ 750 162.5 185.5 830 540 - 162.125/750 162.150/750 162.175/750 162.200/750 162.250/750 ≈ 750 168 191 830 530 - 18.125/750 17.150/750 17.175/750 17.200/750 17.250/750 ≈ 750 175 198 830 530 - 18.125/750 18.150/750 18.175/750 18.200/750 18.250/750 ≈ 750 187.5 210.5 830 520 - 187.125/750 187.150/750 187.175/750 187.200/750 187.250/750 ≈ 750 200 223 830 500 - 20.125/750 20.150/750 20.175/750 20.200/750 20.200/750 20.250/750 ≈ 850 150 173 930 650 15.100/850 15.150/850	650	200	223	730	400	_	_	20.150/650	20.175/650	20.200/650	20.250/650	≈ 2.54
750 162.5 185.5 830 540 - 162.125/750 162.150/750 162.175/750 162.200/750 162.200/750 162.250/750 ≈ 750 168 191 830 540 - 17.125/750 17.150/750 17.175/750 17.200/750 17.250/750 ≈ 750 175 198 830 530 - 18.125/750 18.150/750 18.175/750 18.200/750 18.250/750 ≈ 750 187.5 210.5 830 520 - 187.125/750 187.150/750 187.175/750 187.200/750 187.250/750 ≈ 750 200 223 830 500 - 20.125/750 20.150/750 20.175/750 187.200/750 187.250/750 ≈ 850 150 173 930 650 15.100/850 15.125/850 15.150/850 15.175/850 15.200/850 15.250/850 ≈ 850 168 191 930 630 17.100/850 17.125/850	750	137.5	160.5	830	560	137.100/750	137.125/750	137.150/750	137.175/750	137.200/750	137.250/750	≈ 2.22
750 168 191 830 540 - 17.125/750 17.150/750 17.175/750 17.200/750 17.250/750 ≈ 750 175 198 830 530 - 18.125/750 18.150/750 18.175/750 18.200/750 18.250/750 ≈ 750 187.5 210.5 830 520 - 187.125/750 187.150/750 187.175/750 187.200/750 187.250/750 ≈ 750 200 223 830 500 - 20.125/750 20.150/750 20.175/750 20.200/750 20.250/750 ≈ 850 150 173 930 650 15.100/850 15.125/850 15.150/850 15.175/850 15.200/850 15.250/850 ≈ 850 162.5 185.5 930 640 162.100/850 17.125/850 17.150/850 17.175/850 17.200/850 17.250/850 ≈ 850 168 191 930 630 7.1100/850 17.125/850 18.150/850	750	150	173	830	550	15.100/750	15.125/750	15.150/750	15.175/750	15.200/750	15.250/750	≈ 2.29
750 175 198 830 530 - 18.125/750 18.150/750 18.175/750 18.200/750 18.250/750 ≈ 750 187.5 210.5 830 520 - 187.125/750 187.150/750 187.175/750 187.200/750 187.250/750 ≈ 750 200 223 830 500 - 20.125/750 20.150/750 20.175/750 20.200/750 20.250/750 ≈ 850 150 173 930 650 15.100/850 15.125/850 15.150/850 15.175/850 15.200/850 15.250/850 ≈ 850 162.5 185.5 930 640 162.100/850 162.125/850 162.150/850 162.175/850 162.200/850 162.250/850 ≈ 850 168 191 930 630 17.100/850 17.125/850 17.150/850 17.175/850 17.200/850 17.250/850 ≈ 850 187.5 210.5 930 620 - 187.125/850 187.150	750	162.5	185.5	830	540	_	162.125/750	162.150/750	162.175/750	162.200/750	162.250/750	≈ 2.35
750 187.5 210.5 830 520 - 187.125/750 187.150/750 187.175/750 187.200/750 187.250/750 ≈ 750 200 223 830 500 - 20.125/750 20.150/750 20.175/750 20.200/750 20.250/750 ≈ 850 150 173 930 650 15.100/850 15.125/850 15.150/850 15.175/850 15.200/850 15.250/850 ≈ 850 162.5 185.5 930 640 162.100/850 162.125/850 162.150/850 162.175/850 162.200/850 162.250/850 ≈ 850 168 191 930 630 17.100/850 17.125/850 17.150/850 17.175/850 17.200/850 17.250/850 ≈ 850 175 198 930 630 - 18.125/850 18.150/850 18.175/850 18.200/850 18.250/850 ≈ 850 187.5 210.5 930 620 - 187.125/850 187.150	750	168	191	830	540	_	17.125/750	17.150/750	17.175/750	17.200/750	17.250/750	≈ 2.38
750 200 223 830 500 - 20.125/750 20.150/750 20.175/750 20.200/750 20.200/750 20.250/750 ≈ 850 150 173 930 650 15.100/850 15.125/850 15.150/850 15.175/850 15.200/850 15.250/850 ≈ 850 168 191 930 630 17.100/850 17.125/850 17.150/850 17.175/850 17.200/850 17.250/850 ≈ 850 175 198 930 630 - 18.125/850 18.150/850 18.175/850 18.200/850 18.250/850 ≈ 850 187.5 210.5 930 620 - 187.125/850 187.150/850 187.175/850 187.200/850 187.250/850 ≈	750	175	198	830	530	_	18.125/750	18.150/750	18.175/750	18.200/750	18.250/750	≈ 2.41
850 150 173 930 650 15.100/850 15.125/850 15.150/850 15.175/850 15.200/850 15.250/850 ≈ 850 162.5 185.5 930 640 162.100/850 162.125/850 162.150/850 162.175/850 162.200/850 162.250/850 ≈ 850 168 191 930 630 17.100/850 17.125/850 17.150/850 17.175/850 17.200/850 17.250/850 ≈ 850 175 198 930 630 - 18.125/850 18.150/850 18.175/850 18.200/850 18.250/850 ≈ 850 187.5 210.5 930 620 - 187.125/850 187.150/850 187.175/850 187.200/850 187.250/850 ≈	750	187.5	210.5	830	520	_	187.125/750	187.150/750	187.175/750	187.200/750	187.250/750	≈ 2.48
850 162.5 185.5 930 640 162.100/850 162.125/850 162.150/850 162.175/850 162.200/850 162.250/850 ≈ 850 168 191 930 630 17.100/850 17.125/850 17.150/850 17.175/850 17.200/850 17.250/850 ≈ 850 175 198 930 630 - 18.125/850 18.150/850 18.175/850 18.200/850 18.250/850 ≈ 850 187.5 210.5 930 620 - 187.125/850 187.150/850 187.175/850 187.200/850 187.250/850 ≈	750						20.125/750	20.150/750	20.175/750	20.200/750	20.250/750	≈ 2.54
850 168 191 930 630 17.100/850 17.125/850 17.150/850 17.175/850 17.200/850 17.250/850 ≈ 850 175 198 930 630 - 18.125/850 18.150/850 18.175/850 18.200/850 18.250/850 ≈ 850 187.5 210.5 930 620 - 187.125/850 187.150/850 187.175/850 187.200/850 187.250/850 ≈	850	150	173	930	650	15.100/850	15.125/850	15.150/850	15.175/850	15.200/850	15.250/850	≈ 2.29
850 175 198 930 630 - 18.125/850 18.150/850 18.175/850 18.200/850 18.250/850 ≈ 850 187.5 210.5 930 620 - 187.125/850 187.150/850 187.175/850 187.200/850 187.250/850 ≈												≈ 2.35
850 187.5 210.5 930 620 − 187.125/850 187.150/850 187.175/850 187.200/850 ≈				930		17.100/850						≈ 2.38
						_						≈ 2.41
850 200 223 930 600 − 20.125/850 20.150/850 20.175/850 20.200/850 ≈						_		187.150/850	187.175/850	187.200/850		≈ 2.48
	850	200	223	930	600	_	20.125/850	20.150/850	20.175/850	20.200/850	20.250/850	≈ 2.54

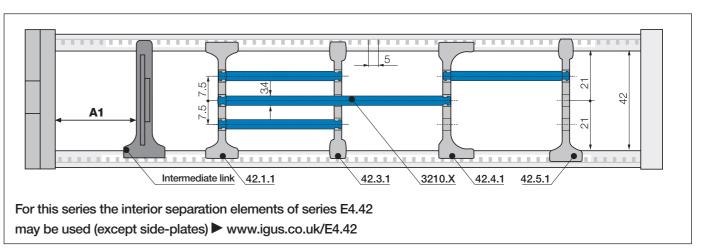

R	100	125	150	175	200	250
H -0 +25	267	317	367	417	467	567
K	500	650	725	800	875	1,050

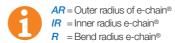
Pitch [mm/link]	67
Links/m	15
corresponds to [mm]	1,005


Installation dimensions

Dimension A1 dependent on outer radius AR


AR	R 100	R 125	R 150	R 175	R 200	R 250				
[mm]	A1 [mm]	A1 [mm]	A1 [mm]	A1 [mm]	A1 [mm]	A1 [mm]				
400	49	50	51	53	54	58				
500	64	65	66	67	68	71				
600	79	79	80	81	82	85				
650	86	87	87	88	89	92				
750	101	101	102	103	104	106				
850	116	116	117	118	118	120				
Dimension A1 always with tolerance of ± 2.5mm										


Note: outer radius AR (see drawing) determines dimension A1!



Dimensions

Series TC42 | Interior separation

 X_1 = Inner machine limit

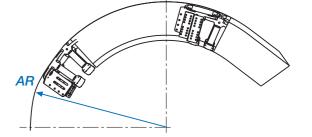
H = Nominal clearance height X_2 = Outer machine limit K = Add-on for bend radius

twisterchain TC56

56mm inner height - product range

AR	Bi	Ва	X ₂	X_1	R 150 [mm]	R 200 [mm]	R 250 [mm]	R 300 [mm]	R 400 [mm]	TC56
[mm]	[mm]	[mm]	[mm]	[mm]	TC56	TC56	TC56	TC56	TC56	[kg/m]
650	125	155	730	470	12.150/650	12.200/650	12.250/650	12.300/650	_	≈ 3.45
650	137.5	168	730	460	_	13.200/650	13.250/650	13.300/650	13.400/650	≈ 3.54
650	150	180	730	450	_	_	15.250/650	15.300/650	15.400/650	≈ 3.62
650	162.5	193	730	440	_	_	16.250/650	16.300/650	16.400/650	≈ 3.70
650	175	205	730	430	_	_	_	17.300/650	17.400/650	≈ 3.78
650	187.5	218	730	420	_	_	_	18.300/650	18.400/650	≈ 3.87
650	200	230	730	400	_	_	_	_	20.400/650	≈ 3.95
750	137.5	168	830	560	.13.150/750	.13.200/750	.13.250/750	.13.300/750	_	≈ 3.54
750	150	180	830	550	-	.15.200/750	.15.250/750	.15.300/750	.15.400/750	≈ 3.62
750	162.5	193	830	540	_	.16.200/750	.16.250/750	.16.300/750	.16.400/750	≈ 3.70
750	175	205	830	530	_	_	.17.250/750	.17.300/750	.17.400/750	≈ 3.78
750	187.5	218	830	520	_	_	.18.250/750	.18.300/750	.18.400/750	≈ 3.87
750	200	230	830	500	_	_	.20.250/750	.20.300/750	.20.400/750	≈ 3.95
850	150	180	930	650	15.150/850	15.200/850	15.250/850	15.300/850	15.400/850	≈ 3.62
850	162.5	193	930	640	16.150/850	16.200/850	16.250/850	16.300/850	16.400/850	≈ 3.70
850	175	205	930	630	17.150/850	17.200/850	17.250/850	17.300/850	17.400/850	≈ 3.78
850	187.5	218	930	620	_	18.200/850	18.250/850	18.300/850	18.400/850	≈ 3.87
850	200	230	930	600	_	_	20.250/850	20.300/850	20.400/850	≈ 3.95

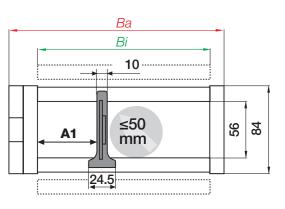
R	150	200	250	300	400	
H_{+25}^{-0}	384	484	584	684	884	
K	750	900	1,050	1,225	1,450	


Pitch [mm/link]	91
Links/m	11
corresponds to [mm]	1,001

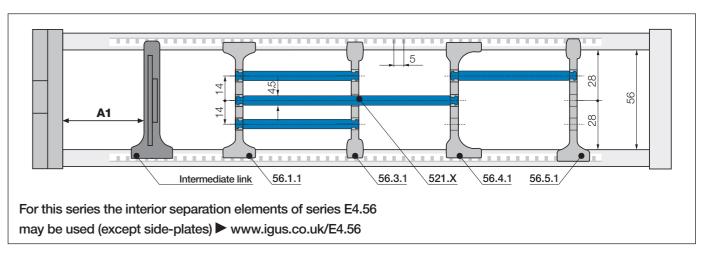
Installation dimensions

Dimension A1 dependent on outer radius AR

		200	R 300	R 400	
A1 [mm]	A1 [mm]	A1 [mm]	A1 [mm]	A1 [mm]	
83	85	88	90	97	
98	101	102	103	110	
113	116	117	118	124	
	83 98	83 85 98 101	83 85 88 98 101 102	83 85 88 90 98 101 102 103	98 101 102 103 110



Dimension A1 always with tolerance of ± 2.5mm

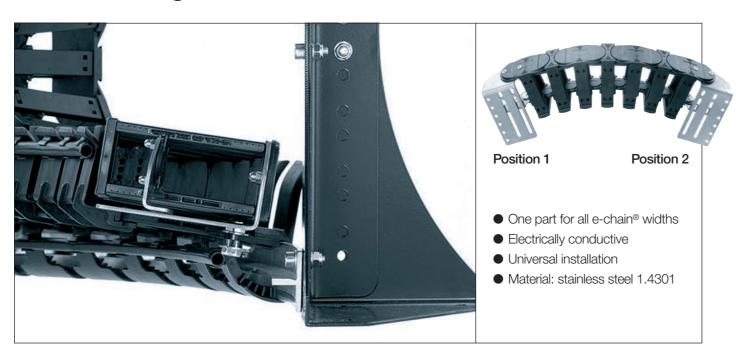

Note: outer radius AR (see drawing) determines dimension A1!

Dimensions

Series TC56 | Interior separation

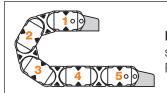
AR = Outer radius of e-chain® IR = Inner radius e-chain®

 X_1 = Inner machine limit


 X_2 = Outer machine limit

H = Nominal clearance height

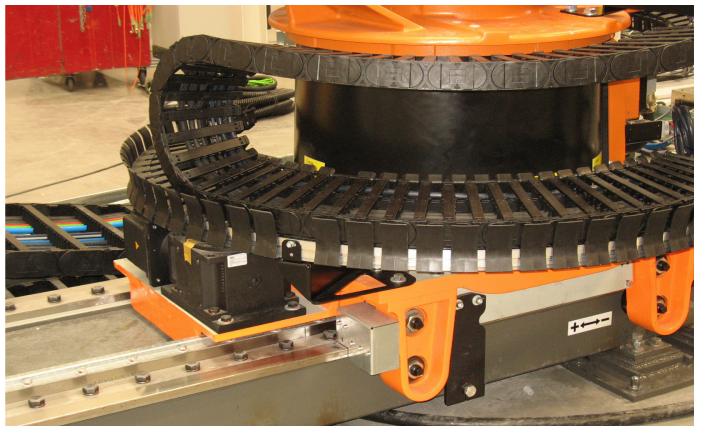
K = Add-on for bend radius


twisterchain accessories

Steel mounting brackets

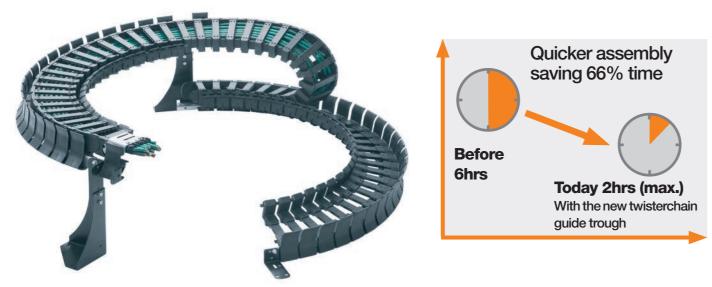
Steel, one-piece for twisterchain (2nd generation) Recommended for unsupported and rotary applications

For	Part No.	Part No.	Part No.		
series	full set	position 1	position 2		
TC32	TC3200.34.VS.E	TC3200.30.VS.E	TC3200.40.VS.E		
TC42 >	TC4200.34.VS.E	TC4200.30.VS.E	TC4200.40.VS.E		
TC56 >	TC5600.34.VS.E	TC5600.30.VS.E	TC5600.40.VS.E	TC5600.40.VS.E	

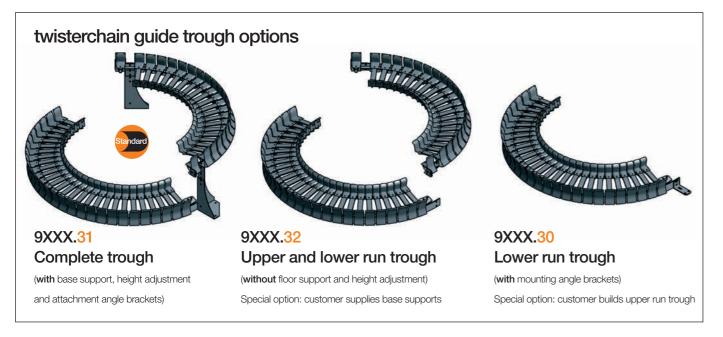

Note: twisterchain e-chains® must always start and end on an outer side-link. Please note when calculating!

Applications

twisterchain on a cleaning robot


twisterchain on axis 7 of a robot

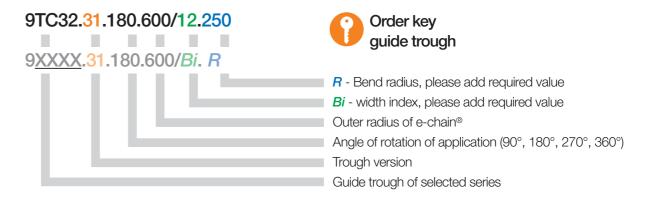
twisterchain accessories


Guide troughs

Save installation time and cost better guidance for circular movement increase service life!

With the new twisterchain guide trough, complex adjustment work is reduced and so assembly time is reduced from 6 hours to 2 hours. It also reduces noise, whilst travel speed and service life can be increased, thanks to its nearly all-plastic design. Available for all twisterchains from the new and original product range.

- Suitable for high dynamics, because of the full guidance of the upper run
- Much smoother and quieter motion in the trough due to continuous guidance of the upper run
- Upper run guided in the polymer trough over the full length
- Preassembled delivery possible
- Easy adjustment, alignment and handling
- Assembly time reduced from 6 hours to 2 hours

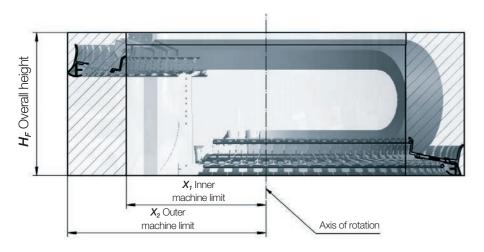

Product range

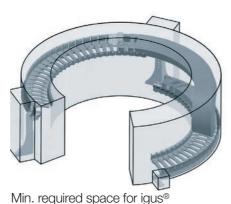
Guide troughs

Part No.	Outer radius	Angle of rotation	Part No.	Part No.	Part No.
series	AR [mm]	minmax. α	complete trough	upper/lower run trough	lower run trough
		0 - 90°	9XXX.31.90 .400/Bi.R	9XXX.32.90 .400/Bi.R	9XXX.30.90 .400/ <i>Bi.R</i>
	400	90° - 180°	9XXX.31.180.400/Bi.R	9XXX.32.180.400/Bi.R	9XXX.30.180.400/Bi.R
	400	180° - 270°	9XXX.31.270.400/Bi.R	9XXX. <mark>32</mark> .270.400/ <i>Bi.R</i>	9XXX.30.270.400/Bi.R
3		270° - 360°	9XXX.31.360.400/Bi.R	9XXX. <mark>32</mark> .360.400/ <i>Bi.R</i>	9XXX.30.360.400/Bi.R
8		0 - 90°	9XXX.31.90 .500/Bi.R	9XXX.32.90 .500/Bi.R	9XXX.30.90 .500/Bi.R
	500	90° - 180°	9XXX.31.180.500/Bi.R	9XXX.32.180.500/ <i>Bi.R</i>	9XXX.30.180.500/Bi.R
Ŋ	300	180° - 270°	9XXX.31.270.500/Bi.R	9XXX.32.270.500/Bi.R	9XXX.30.270.500/Bi.R
TC32 / TC42		270° - 360°	9XXX.31.360.500/Bi.R	9XXX.32.360.500/ <i>Bi.R</i>	9XXX.30.360.500/Bi.R
Ĕ	600	0 - 90°	9XXX.31.90 .600/Bi.R	9XXX.32.90 .600/Bi.R	9XXX.30.90 .600/Bi.R
		90° - 180°	9XXX.31.180.600/ <i>Bi.R</i>	9XXX.32.180.600/Bi.R	9XXX.30.180.600/Bi.R
	000	180° - 270°	9XXX.31.270.600/Bi.R	9XXX. <mark>32</mark> .270.600/ <i>Bi.R</i>	9XXX.30.270.600/Bi.R
		270° - 360°	9XXX.31.360.600/ <i>Bi.R</i>	9XXX.32.360.600/ <i>Bi.R</i>	9XXX.30.360.600/Bi.R
		0 - 90°	9XXX.31.90 .650/Bi.R	9XXX.32.90 .650/ <i>Bi.R</i>	9XXX.30.90 .650/Bi.R
	650	90° - 180°	9XXX.31.180.650/ <i>Bi.R</i>	9XXX.32.180.650/ <i>Bi.R</i>	9XXX.30.180.650/ <i>Bi.R</i>
	030	180° - 270°	9XXX.31.270.650/Bi.R	9XXX.32.270.650/ <i>Bi.R</i>	9XXX.30.270.650/Bi.R
ဖွ		270° - 360°	9XXX.31.360.650/ <i>Bi.R</i>	9XXX.32.360.650/ <i>Bi.R</i>	9XXX.30.360.650/Bi.R
TC42 / TC56		0 - 90°	9XXX.31.90 .750/Bi.R	9XXX.32.90 .750/Bi.R	9XXX.30.90 .750/Bi.R
Ĕ	750	90° - 180°	9XXX.31.180.750/Bi.R	9XXX.32.180.750/ <i>Bi.R</i>	9XXX.30.180.750/Bi.R
7	730	180° - 270°	9XXX.31.270.750/Bi.R	9XXX.32.270.750/Bi.R	9XXX.30.270.750/Bi.R
2		270° - 360°	9XXX.31.360.750/Bi.R	9XXX.32.360.750/ <i>Bi.R</i>	9XXX.30.360.750/Bi.R
Ĕ		0 - 90°	9XXX.31.90 .850/Bi.R	9XXX. <mark>32</mark> .90 .850/ <i>Bi.R</i>	9XXX.30.90 .850/Bi.R
	850	90° - 180°	9XXX.31.180.850/Bi.R	9XXX. <mark>32</mark> .180.850/ <i>Bi.R</i>	9XXX.30.180.850/Bi.R
	000	180° - 270°	9XXX.31.270.850/Bi.R	9XXX. <mark>32</mark> .270.850/ <i>Bi.R</i>	9XXX.30.270.850/Bi.R
		270° - 360°	9XXX.31.360.850/Bi.R	9XXX.32.360.850/Bi.R	9XXX.30.360.850/Bi.R

Complete part No. 9XXX with required series (TC32, TC42, TC56),

value Bi and required bend radius R ▶ 9TC32.31.180.600/06.250


More order examples


Complete trough	Part No. 9TC32.31.180.600/12.250
Lower run trough only	Part No. 9TC32.30.180.600/12.250
Upper and lower run trough without base support	Part No. 9TC32.32.180.600/12.250

twisterchain accessories

Guide troughs - dimensions

twisterchain-guide trough system

Installation dimensions X_1 inner machine limit and X_2 outer machine limit

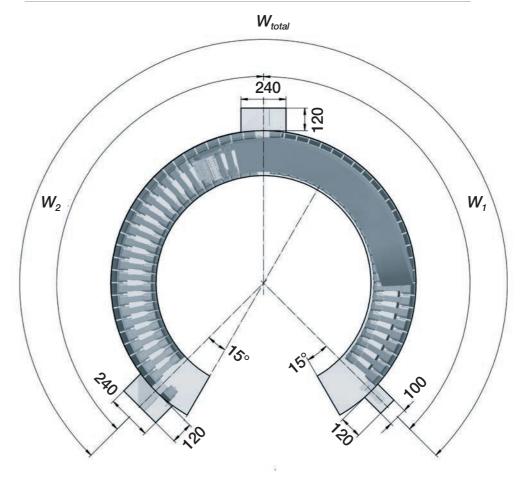
AR	X_2					X₁ de	pending	on <i>Bi</i>				
[mm]	[mm]						[mm]					
TC32		87.5	100	108	125	137.5	150					
400	480	270	250	250	220	210	200					
500	580	_	350	350	320	310	300					
600	680	_	_	450	420	410	400					
TC42		87.5	100	108	125	137.5	150	162.5	168	175	187.5	200
400	480	270	250	250	220	210	200	190	190	180	_	-
500	580	_	350	350	320	310	300	290	290	280	280	250
600	680	_	_	450	420	410	400	390	390	380	380	350
650	730	_	_	_	470	460	450	440	440	430	420	400
750	830	_	_	_	_	560	550	540	540	530	520	500
850	930	_	_	_	_	_	650	640	640	630	620	600
TC56			_	_	125	137.5	150	162.5	_	175	187	200
650	730	_	_	_	470	460	450	440	_	430	420	400
750	830	_	_	_	_	560	550	540	_	530	520	500
850	930	_	_	_	_	_	650	640	_	630	620	600

Construction height $|H_{\varepsilon}|$ depending on bend radius of twisterchain guide trough

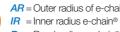
Part No.	R [mm]	100	125	150	175	200	250	300	400	
series				Н	I_F Installatio	n height [mr	n]			
TC32		370	420	470	520	570	670	_	_	
TC42		380	430	480	530	580	680	_	_	
TC56		_	_	500	_	600	700	800	1,000	

twisterchain accessories

Guide troughs - rotation angle


Angle of rotation for 360° | W₂ angle of upper run twisterchain guide trough

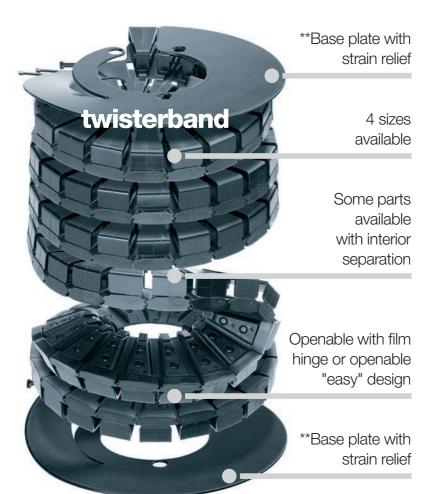
Part No.	AR	R [mm]	100	125	150	175	200	250	300	400
series	[mm]					W_2 angle of	of rotation			
TC32/TC42	400		90°	90°	90°	90°	90°	90°	90°	90°
TC32/TC42	500		90°	90°	90°	90°	90°	90°	90°	90°
TC32/TC42	600		135°	135°	135°	135°	90°	90°	90°	90°
TC42/TC56	650		135°	135°	135°	135°	90°	90°	90°	90°
TC42/TC56	750		135°	135°	135°	135°	135°	135°	90°	90°
TC42/TC56	850		135°	135°	135°	135°	135°	135°	135°	135°

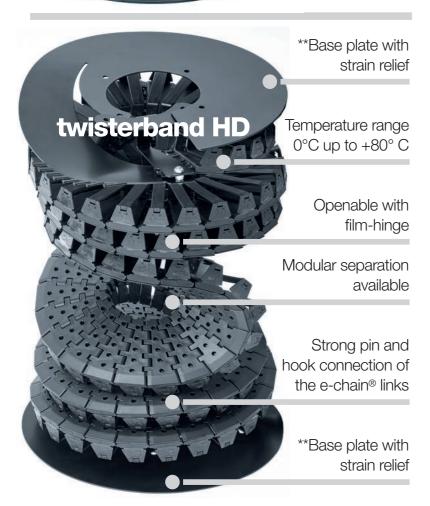

Support for the upper run as of 180° rotation angle

Angle of rotation $|W_1|W_{total}$

Angle of rotation of system	Angle of lower run
$W_{ m ges.}$	W_{1}
90°	45°
180°	90°
270°	135°
360°	180°

 X_2 = Outer machine limit


H_F e-chain® height incl. 50mm clearance H e-chain® height


W1 = Angle of upper run **W2** = Angle of lower run

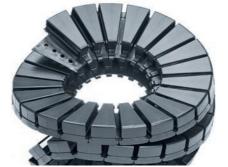
 W_{total} = Angle of rotation of system

twisterband advantages

Up to 7,000°* rotary movements in small spaces twisterband

With the compact igus® twisterband, rotations of up to 7,000°* can be achieved cost-effectively, even in confined spaces. Energy, data and media are securely guided.

- Rotary movement up to 7000°*
- Rotary speeds up to 180°/s possible
- Openable with film hinge or openable "easy" design
- HD version with strong pin and hook connection for an even longer service life
- Compact, modular and lightweight
- Bands can be lengthened and shortened as required
- Minimum installation space, fits very closely around the rotary axis
- Cost-effective and easy to fill


*Depending on installation orientation, vertical: up to 3,000°, horizontal: 7,000° and more possible **Base plates are delivered as standard as part of the twisterband module

iF product 2011 for twisterband

Selection table

Series	Inner heigh	lnner width	$\emptyset X_1$	$\emptyset X_2$	≥ <i>R</i>	≤ <i>R</i>	≤ d1 💽	Interior	igus®
	hi [mm]	Bi [mm]	[mm]	[mm]	[mm]	[mm]	[mm]	separation	online

twisterband

e-chain[®] links on a strip. Openable with film hinge or openable "easy" design

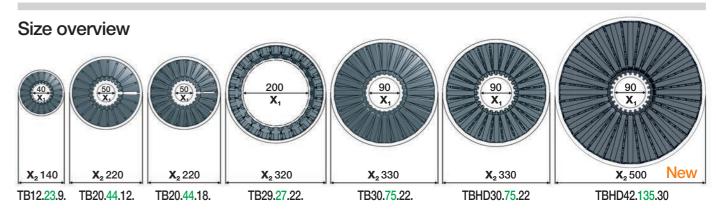
www.igus.co.uk/twisterband	_	7	035	024	140	40	23	9	TB12.23.9
www.igus.co.uk/twisterband	_	9	057	034	220	50	44	12	TB20.44.12
www.igus.co.uk/twisterband	Yes	14	057	034	220	50	44	18	TB20.44.18
www.igus.co.uk/twisterband	Yes	17	082	069	320	200	27	22	TB29.27.22
www.igus.co.uk/twisterband	Yes	17	077	044	330	90	75	22	TB30.75.22

twisterband HD

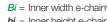
e-chain® links with strong pin and hook connection. Openable with film-hinge

TBHD30.75.22	22	75	90	330	044	077	17	Yes	www.igus.co.uk/twisterband
TBHD42.135.30 N	lew 30	135	90	500	056	119	20	Yes	www.igus.co.uk/twisterband

Other sizes available upon request. X_1 =inner machine limit X_2 = outer machine limit

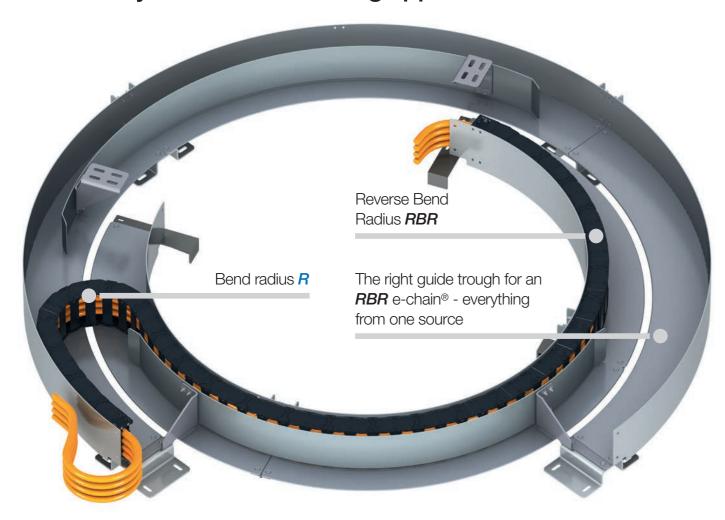

The complete range with ordering options,

3D-CAD, configurators, PDFs, application examples ▶ www.igus.co.uk/twisterband



Available from stock. Ready to ship in 24 - 48hrs.*

*The delivery times indicated correspond to the average time until the ordered goods are dispatched.

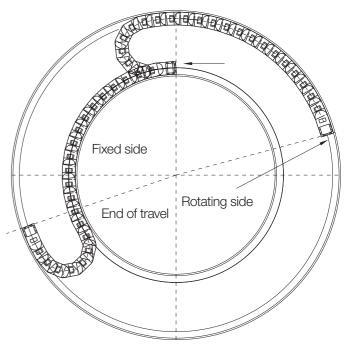


 $Bi = Inner width e-chain[®] <math>X_1 = Inner machine limit$ hi = Inner height e-chain® X_2 = Outer machine limit ≥ R = Minimum bend radius e-chain® ≤ R = Max. bend radius e-chain®

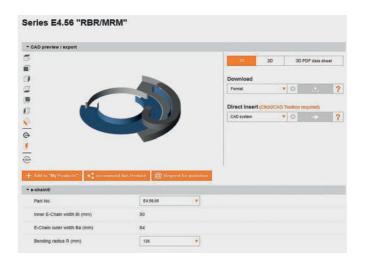
d1 = Max. cable diameter **XX** = Number of strips

Rotating energy supplies Modular system for fast rotating applications with RBR

Rotating energy supply - the modular system for fast rotating applications with RBR


For several years igus® has been developing customised systems for circular movements with e-chains®, to offer rotating energy supply systems. As a result rotating systems can be supplied with energy, data and liquids for the machine tool industry, in robotics and in bucket wheel excavators. The standard igus® rotary modules consist of two circular guide elements. One part of the guide trough is attached to the stationary part of the system and the other part to the rotating part. The fixed end of the e-chain® can be freely selected, as both the inside and outside parts of the rotary modules can be rotated. RBR (Reverse Bend Radius) means that the e-chain® can bend in two directions. **RBR** versions of many igus® e-chains®can be made. The *RBR* does not necessarily need to be identical to the normal bend radius *R* (bend radius) of an e-chain[®]. In this way, most circular movements can be implemented.

- Maximum rotation angle in minimal installation space
- Minimal friction forces and maximum service life
- Modular construction with standardised mounting options
- Integrated strain relief and cable routing directly in the guide trough
- Determine the rotating energy supply quickly and easily using the CAD configurator
- www.igus.co.uk/rbr-configurator
- Depending on the application, the e-chains® glide on surfaces made of plastic, stainless steel or galvanised steel and are guided through special guide plates in a defined circular motion
- Failsafe cables for rotary guide systems ➤ www.igus.co.uk/chainflex


e-chains and troughs Complete rotating energy supply systems from a single source

E2 RBR e-chain® applications for 360° circular movement on a robot

Principle of igus® rotating energy supply with Reverse Bend Radius (RBR)

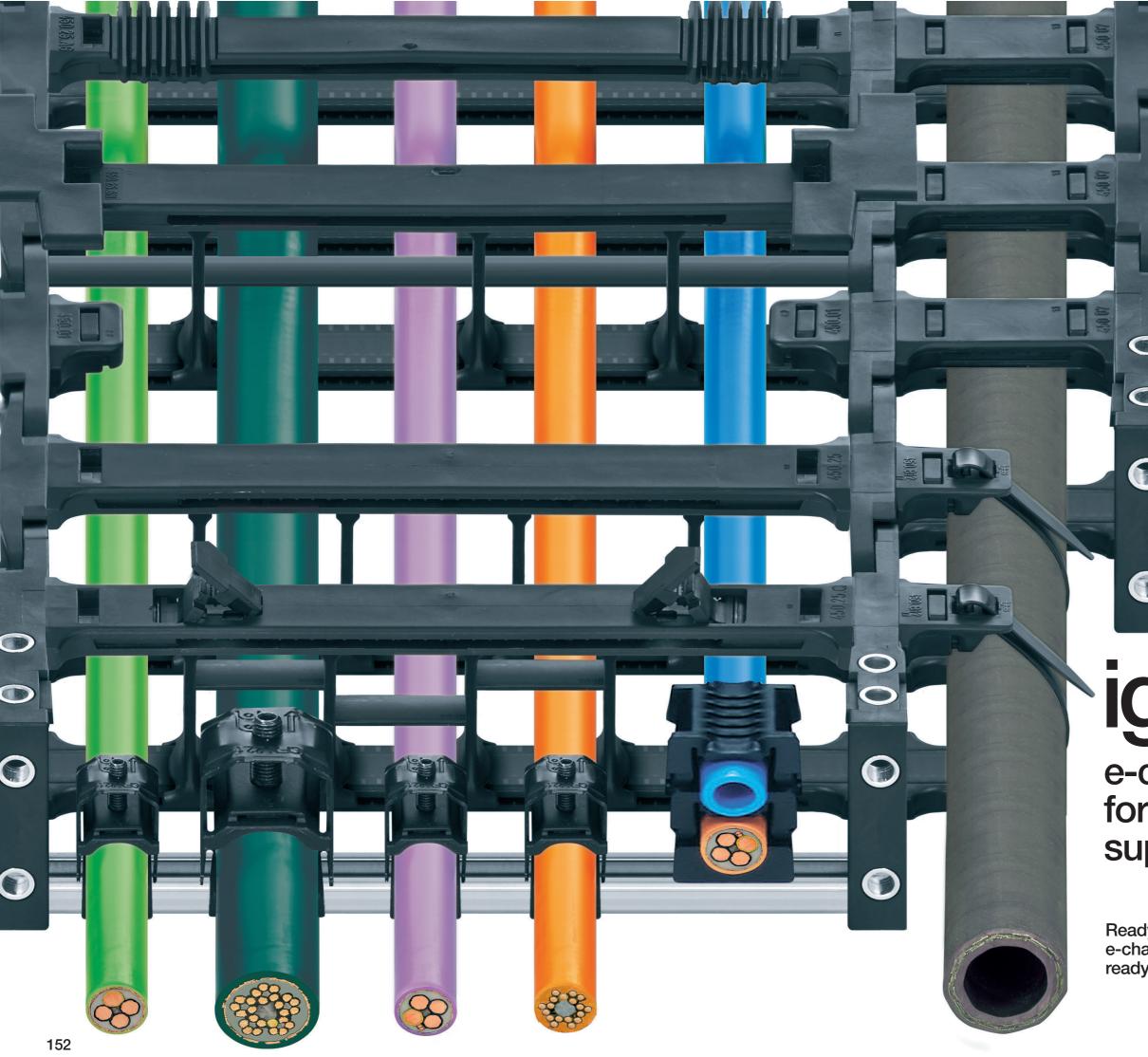
Configure in seconds ...

The length of the e-chain® is calculated according to the rotation angle and the diameters. The e-chain® should be as short as possible. The e-chain® length required for your rotation angle can be determined easily, quickly and reliably via the igus® CAD configurator.

Configure bend radii online

www.igus.co.uk/rbr-configurator

The complete range with ordering options,


3D-CAD, configurators, PDFs, application examples ▶ www.igus.co.uk/RBR

Rotary energy chains with RBR - Delivery time 5 business days! Rotary guide trough - Delivery time upon request

igus® E4.1

e-chains® and e-tubes for secure energy supply on robot axis 7

Ready-to-install assembled e-chainsystems® e.g. for axis 7 - readychain® ▶ From page 212

System E4.1 advantages

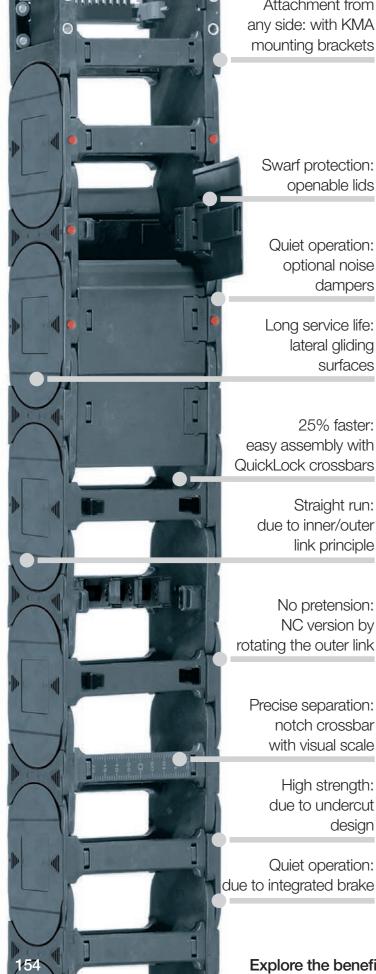
Attachment from

openable lids

Quiet operation: optional noise

Long service life:

lateral gliding


dampers

surfaces

25% faster:

Straight run:

link principle

Reliable energy supply, for robot axis 7 system E4.1

Secure energy supply to axis 7 with igus® e-chains®. Even on long travels (when used with igus® guide troughs), high accelerations or in dirty environments, igus® e-chains® are the ideal partner for your robot application.

- Undercut design for high lateral stability, high strength for long travels and for large unsupported lengths
- Many interior separation options
- Noise-reducing brake and optional noise
- Ideal for long travels in combination with igus® trough system
- Especially suited for side-mounted applications
- Inner and outer links for quick assembly, with or without pretension

No pretension: NC version by rotating the outer link

Precise separation: notch crossbar with visual scale

> High strength: due to undercut design

Quiet operation: due to integrated brake

IPA Qualification Certificate - Report IG 1303-640-1: ISO Class 2, according to DIN EN ISO 14644-1 for System E4.1, Series E4.32.10.063.0.CR at v = 0.5 / 1.0 / 2.0

41 dB(A) - value determined at the igus® test lab, v = 1.8m/s unsupported, series E4.21.060.038.0

Electrically conductive ESD e-chains® several series available from stock

Selection table

Series	Inner height hi [mm]	Inner width Bi [mm]	Outer width Ba [mm]	Outer height ha [mm]	Bend radius R [mm]	Unsupported length ≤ [m]	igus® online
V				1 3	e-chains® wi e-chains® for pa demanding app	articularly	rs every link
E4.21	21	30 - 140	44 - 154	28	038 - 200	2.50	► www.igus.co.uk/E4.21
E4.28	28	40 - 300	60 - 320	42	055 - 250	2.50	www.igus.co.uk/E4.28
E4.32	32	50 - 400	73 - 423	54	063 - 300	3.30	www.igus.co.uk/E4.32
E4.42	42	50 - 400	76 - 426	64	075 - 350	4.00	www.igus.co.uk/E4.42
E4.56	56	50 - 600	84 - 634	84	135 - 500	5.00	► www.igus.co.uk/E4.56
E4.80	80	50 - 600	100 - 650	108	150 - 1.000	6.20	www.igus.co.uk/E4.80
E4.112	112	50 - 600	102 - 652	140	200 - 1.000	6.50	www.igus.co.uk/E4.112
E4.162	162	200 - 600	256 - 656	195	250 - 1.000	6.75	www.igus.co.uk/E4.162
Standard			V	1-7	e-chains® for alr application - sta	most any	rs every 2 nd link
H4.32	32	50 - 400	73 - 423	54	063 - 300	3.30	www.igus.co.uk/H4.32
H4.42	42	50 - 400	76 - 426	64	075 - 350	4.00	www.igus.co.uk/H4.42
H4.56	56	50 - 600	84 - 634	84	135 - 500	5.00	www.igus.co.uk/H4.56
H4.80	80	50 - 600	100 - 650	108	150 - 1.000	6.20	www.igus.co.uk/H4.80
	\ \ \ \ \ \ \ \ \ \ \ \ \ \			1	e-tubes Fully enclosed, excellent cable p	orotection	
R4.28	28	50 - 300	70 - 320	42	075 - 250	2.50	➤ www.igus.co.uk/E4.28
R4.32	32	50 - 300	73 - 323	54	125 - 300	3.30	www.igus.co.uk/E4.32
R4.42	42	50 - 300	76 - 326	64	125 - 350	4.00	www.igus.co.uk/E4.42
R4.56	56	75 - 462	109 - 497	84	135 - 500	5.00	www.igus.co.uk/E4.56
R4.80	80	100 - 462	150 - 513	108	200 - 1.000	6.20	www.igus.co.uk/E4.80
R4.112	108	200 - 500	252 - 552	140	250 - 1.000	6.50	www.igus.co.uk/E4.112

The complete range with ordering options,

3D-CAD, configurators, PDFs, application examples ▶ www.igus.co.uk/E4.1

Available from stock. Ready to ship in 24 - 48hrs.*

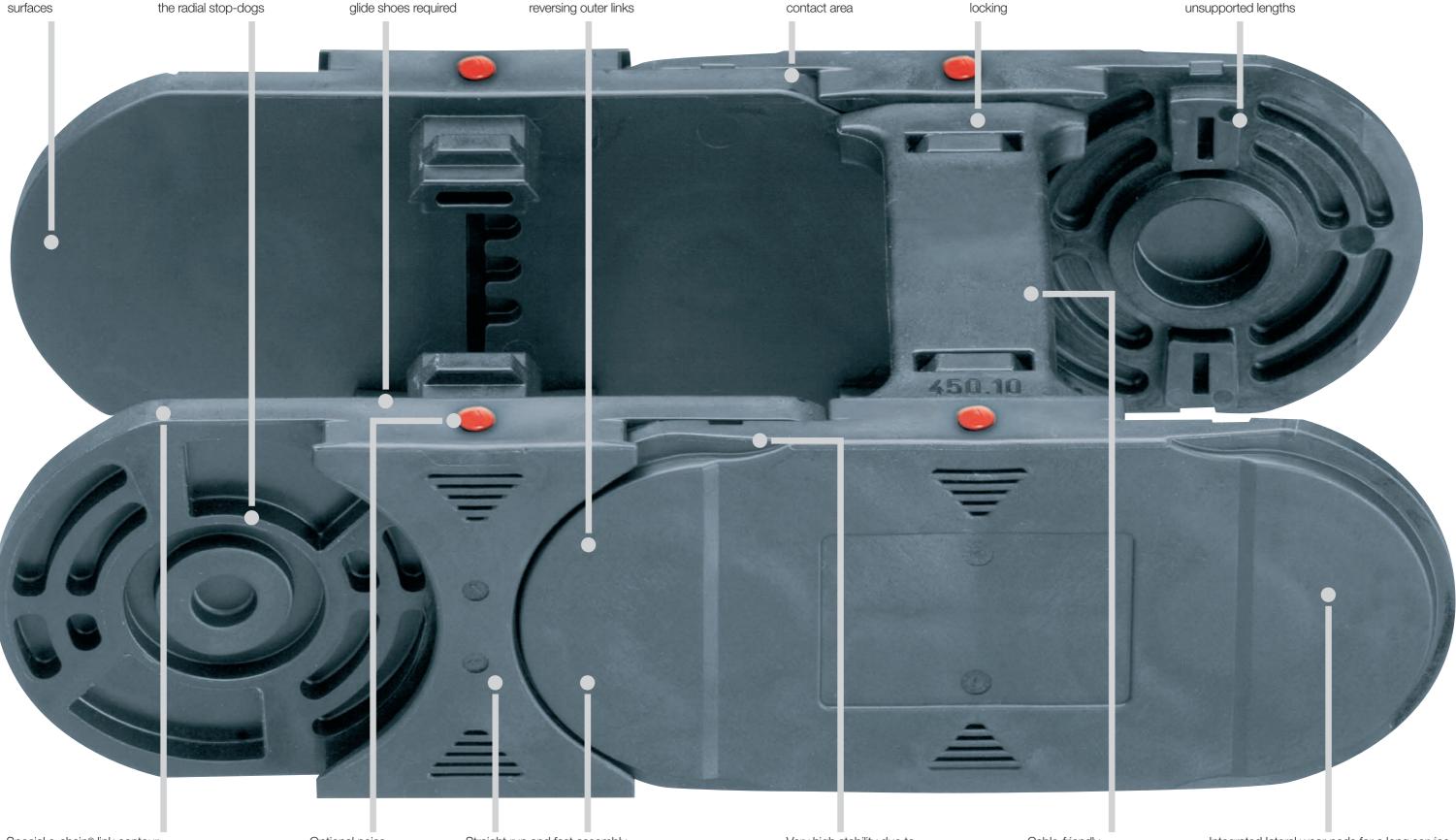
*The delivery times indicated correspond to the average time until the ordered goods are dispatched.

Any application with one Undercut design, combined with the inner/outer link design

e-chain[®] ... E4.1 system
High stability and strength, easy installation

Smooth, cablefriendly inner

Low-noise operation due to integrated brake on


Smooth and wear-resistant gliding surface - no additional glide shoes required

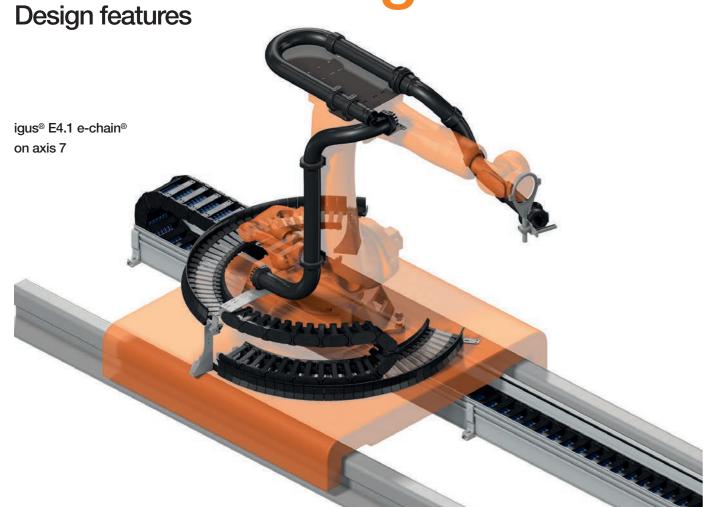
Option with or without camber simply by reversing outer links

ESD version ideal with large undercut contact area

Strong crossbars with double locking

Double vertical stopdog system for larger unsupported lengths

Special e-chain® link contour provides low rolling noise


Optional noise dampers

Straight run and fast assembly due to inner/outer-link design

Very high stability due to the undercut design

Cable-friendly, rounded crossbar Integrated lateral wear pads for a long service life (also for side-mounted applications)

E4.1 advantages

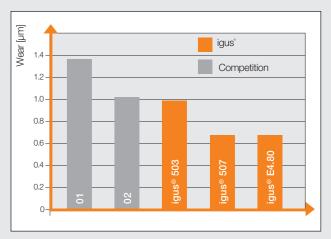
Low noise, unsupported gliding Integrated brake, smooth sliding surfaces - optional rubber dampers Vertical hanging or standing Undercut design increases torsional stability, "No Camber" version (by rotating the outer link) Long travels Undercut design and stop-dogs allows high push-pull forces and large smooth gliding surfaces Unsupported, side-mounted Undercut design extends the unsupported length when side-mounted Quick assembly Inner link/outer link design In part by simply rotating links, or fully with rework. Gliding surfaces on the sides Smooth, wide, solid plastic support surface for cables, many inner separation options Increase service life of e-chains® Large pins, optimised material, high strength		
Low noise, unsupported gliding Integrated brake, smooth sliding surfaces - optional rubber dampers Undercut design increases torsional stability, "No Camber" version (by rotating the outer link) Long travels Undercut design and stop-dogs allows high push-pull forces and large smooth gliding surfaces Unsupported, side-mounted Undercut design extends the unsupported length when side-mounted Quick assembly Inner link/outer link design In part by simply rotating links, or fully with rework. Gliding surfaces on the sides Increase service life Smooth, wide, solid plastic support surface for cables, many inner separation options Increase service life of e-chains® Large pins, optimised material, high strength Undercut design for secure contact (especially for conductive material option)	Application	Design features
Vertical hanging or standing Undercut design increases torsional stability, "No Camber" version (by rotating the outer link) Long travels Undercut design and stop-dogs allows high push- pull forces and large smooth gliding surfaces Unsupported, side-mounted Undercut design extends the unsupported length when side-mounted Inner link/outer link design In part by simply rotating links, or fully with rework. Gliding surfaces on the sides Increase service life Smooth, wide, solid plastic support surface for cables, many inner separation options Increase service life of e-chains® Large pins, optimised material, high strength Undercut design for secure contact (especially for conductive material option)	Long unsupported length	Special stop-dogs, undercut design
"No Camber" version (by rotating the outer link) Long travels Undercut design and stop-dogs allows high push-pull forces and large smooth gliding surfaces Unsupported, side-mounted Undercut design extends the unsupported length when side-mounted Quick assembly Inner link/outer link design In part by simply rotating links, or fully with rework. Gliding surfaces on the sides Increase service life Smooth, wide, solid plastic support surface for cables, many inner separation options Increase service life of e-chains® Large pins, optimised material, high strength ESD, ATEX Undercut design for secure contact (especially for conductive material option)	Low noise, unsupported gliding	Integrated brake, smooth sliding surfaces - optional rubber dampers
Unsupported, side-mounted Undercut design extends the unsupported length when side-mounted Quick assembly Inner link/outer link design In part by simply rotating links, or fully with rework. Gliding surfaces on the sides Smooth, wide, solid plastic support surface for cables, many inner separation options Increase service life of e-chains® Large pins, optimised material, high strength Undercut design for secure contact (especially for conductive material option)	Vertical hanging or standing	
Quick assembly Inner link/outer link design Rotary movement In part by simply rotating links, or fully with rework. Gliding surfaces on the sides Increase service life Smooth, wide, solid plastic support surface for cables, many inner separation options Increase service life of e-chains® Large pins, optimised material, high strength ESD, ATEX Undercut design for secure contact (especially for conductive material option)	Long travels	
Rotary movement In part by simply rotating links, or fully with rework. Gliding surfaces on the sides Smooth, wide, solid plastic support surface for cables, many inner separation options Increase service life of e-chains® Large pins, optimised material, high strength Undercut design for secure contact (especially for conductive material option)	Unsupported, side-mounted	Undercut design extends the unsupported length when side-mounted
Increase service life Smooth, wide, solid plastic support surface for cables, many inner separation options Increase service life of e-chains® Large pins, optimised material, high strength Undercut design for secure contact (especially for conductive material option)	Quick assembly	Inner link/outer link design
Increase service life many inner separation options Large pins, optimised material, high strength Undercut design for secure contact (especially for conductive material option)	Rotary movement	
ESD, ATEX Undercut design for secure contact (especially for conductive material option)	Increase service life	
(especially for conductive material option)	Increase service life of e-chains®	Large pins, optimised material, high strength
Dirt, chips, moisture Undercut design prevents chain failures, dirt resistant design	ESD, ATEX	
	Dirt, chips, moisture	Undercut design prevents chain failures, dirt resistant design

Wear tests

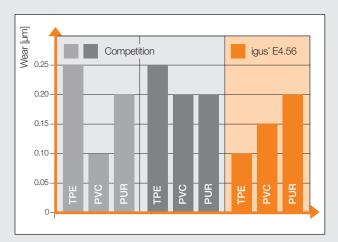
Increase cable service life with igus® components

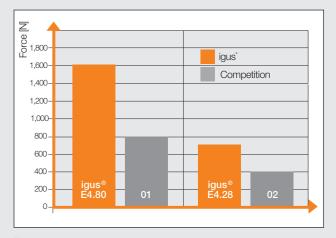
Cables last up to 4 times longer

Using optimised igus® separators, the service life of cables and hoses can be increased by a factor of 4. The rounded base, which produces an even transition to the crossbar has no interfering edges on which cables can abrade. The positive connection provides outstanding locking strength on e-chains® and e-tubes.



Plastic openable crossbars offer long service life


igus® laboratory tests have shown that the lowest cable abrasion occurs on e-chains® with plastic crossbars that also have a cable-friendly, rounded design. The holding force is equally impressive. The igus® test lab conducted tensile force tests on openable crossbars made from various materials. igus® plastic openable crossbars are very torsion resistant and do not deform.


With optimised, rounded igus® separators and cable-friendly plastic crossbars, which increase service life of cables

Wear on plastic separators: wear can be reduced to nearly half with igus® separators

Wear on plastic crossbars: best service life with igus® polymer crossbars

Retention force comparison between polymer and aluminium crossbars - igus® crossbars offer longest service life and maximum holding strength

igus[®] chaintex robot Twistable cables for robots and 3D applications EPLAN download, configurators ▶ www.igus.co.uk/robotics

Selection table

Cables for robots

chainflex®	Jacket	Shield	Bend radius e-chain® [factor x d]	Temperature e-chain [®] from/to [°C]	Approvals and standards		Oil-resistant	Torsion-resistant	Page
Control cables	DUD		0.0	05/ 00					100
CF77.UL.D New	PUR		6.8	-25/+80	CUL) US CALUS (NFPA	EMICO SESINA	√	√	168
CFROBOT2	PUR	✓	10	-25/+80	C UL US CALUS NEPA		✓	✓	172
Data cables									
CFROBOT3	PUR	✓	10	-25/+80	C UL US CALUS NEPA	[[[@ [[@]	✓	✓	174
Measuring system cable	s								
CFROBOT4	PUR	✓	10	-25/+80	C UL US CALUS (NFPA	₩©₽₩ ₩	✓	✓	176
Fibre optic cables									
CFROBOT5	TPE		10	-35/+80		€ H € № 10€	✓	✓	180
Motor cables									
CFROBOT6	PUR		10	-25/+80	CUL US EN US NEPA	[# [@@##(6	✓	✓	182
CFROBOT7	PUR	✓	10	-25/+80	CUL US ALUS NEPA	[✓	✓	184
Spindle cable/Single con	e								
CFROBOT	TPE	✓	10	-35/+90	CUL US EN US NEPA		✓	✓	188
Bus cables									
CFROBOT8	PUR	✓	10	-25/+70	CUL US NEPA NEPA		✓	✓	190
CFROBOT8.PLUS New	PUR	✓	10	-25/+70	CUL US A US NFPA	[✓	✓	194
Hybrid cables									
CFROBOT9	PUR	✓	10	-25/+80	CUL US LUSTED NEPA	₩©	✓	✓	198

Available from stock. Ready for delivery in 24hrs or today.*

*The delivery times indicated correspond to the average time until the ordered goods are dispatched.

36-month chainflex® guarantee

Guaranteed service life for predictable safety

With the help of the chainflex® service life calculator, you can quickly and easily calculate the expected service life of chainflex® cables specifically for your application:

▶ www.igus.co.uk/chainflexlife

chainflex® lasts - or your money back!

Your production processes must remain trouble-free, and that means your energy supply systems too. components, including moving cables. igus® was energy chain systems complete with chainflex® cables which are now being delivered from a single source and with a system guarantee depending on the application. Based on the ever increasing knowhow gained since 1989, and on the sophisticated testing that has been conducted since then, design principles were and are still being developed that help prevent machine downtime in factories throughout the world today. 7 rules for a good cable:

1. Strain-relieving centre

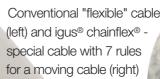
Space is created in the centre of a cable depending on the number of cores and the cross section of each cable. This centre should be filled, as far as possible, with a genuine core element (and not, as frequently the case, with fillers or dummy cores made of waste materials). This braces the surrounding stranded structure and prevents it from sliding into the middle of the cable.

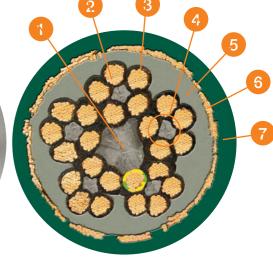
2. Core wire structure

For core wire strands, maximum flexibility has been proven not to be the best solution. Although very thin individual strands result in very flexible conductors, these are highly susceptible to damage. Extensive test series have helped to determine which combination of single wire diameter, pitch of the strands and direction optimises the bending resistance.

3. Core insulation

they do not stick to one another within the cable. Furthermore, the insulation is also required to support the individual strand wires of the conductor. To achieve this, we use only the best PVC and TPE extruded at high pressure and proven in millions of kilometres in e-chain® applications.





4. Core structure

The braided or layered structure must be formed around a strong, tension-proof centre with an optimised short pitch length. To co-exist properly with the insulating materials, braids must allow a certain amount of movement. Starting from 12 cores, bundles should be used instead of layers.

5. Inner jacket

A gusset-filling extruded inner jacket must be used instead of inexpensive fleeces, fillers or tracer. This ensures that the structure is efficiently held in the longitudinal direction. Moreover, the structure cannot fall apart or move around.

6. Shielding

The overall shield should be made tight using an optimised shield angle over an extruded inner jacket. Loose open braids or wrapped stranding reduce the EMC protection considerably and can fail very quickly due to shield wire breakage. A tightly woven shield also has a torsion protection effect on the cable structure.

7. Outer jacket

The optimised outer jacket can fulfil many different requirements: from UV-resistant to lowtemperature-flexible, and from oil-resistant to cost-optimised. But these outer jackets must have one thing in common: a jacket material must be highly abrasion-resistant but not stick to anything. It must be flexible but also provide a supporting function. The jacket should also be extruded under pressure (gusset-filling).

Order your chainflex® catalogue for free! ► www.igus.co.uk/chainflex

chainflex®

Cables for robots

The increasingly complex movements in industrial applications demand twistable cables with a long service life, similar to the classic chainflex® cables for use in linear e-chain systems®.

Stranded cores, core structure, shields and jacket materials have to compensate for circumference changes due to torsional movements, as well force absorbing fillers are used in the chainflex® CFROBOT cables. Special demands are made Torsion-optimised shield structures are chosen that can carry out the necessary compensatory movements thanks to special PTFE gliding films. transmission characteristics such as attenuation, cable impedance and signal quality must remain service life. This is achieved through the use of matching capacitance values.

The highly abrasion-resistant, halogen-free and flame-retardant PUR sheathing mixture in motor, hybrid/control cables and bus cables protects the The highly abrasion-resistant, halogen-free TPEsheath mixture matches the special requirements of twistable FOC fibres and individual wires, and also protects these elements.

Unlike cables for linear e-chain systems®, the combination of bending, torsion and centrifugal applications.

To enable evaluation to take place based on sensible comparative test results, the igus® "torsion test standard" was developed. According to this standard, all chainflex® CFROBOT cables distance of 1 m with a torsion of +/- 180° at least 5 million times.

chainflex®

Torsion tested

In addition, a test is carried out on a test bench with a e-chain® length of approx. 2,500 mm with 270° torsion with an extreme load through centrifugal forces and heavy blows such as those that can occur on an industrial robot. All unshielded, gussetfilling extruded standard chainflex® control cables from the CF130.UL, CF5, CF9 and CF9.UL series comply with the above-named igus® standard and have been approved for use in torsion applications with ±90° and for a cable length of 1 m.

The following twistable CFROBOT cable types are currently available:

- Control cables (shielded and unshielded)
- Data and measuring system cables
- Fibre Optic Cables
- Motor and Servo cables
- Bus cables
- Hybrid cables

We can also offer chainflex® CFROBOT cables pre-fitted with connectors of your choice as a readycable®, or as a ready-to-install readychain® cable assembly.

chainflex guarantee service life guarantee

chainflex® guarantee service life guarantee

	chainflex® cable	Temperature, from/to [°C]	v max. [°/s] Twisted	a max. [°/s²] Twisted	Minimum bend radius [factor x d]	Minimum bend radius [factor x d]	Minimum bend Pag radius [factor x d]
Twistable cables					5 million cycles *	7.5 million cycles *	10 million cycles *
Control cables							
	CF77.UL.D New	-25 / -15 -15 / +70 +70 / +80	180	60	±150 ±180 ±150	±90 ±120 ±90	±30 ±60 168 ±30
	CFROBOT2	-25 / -15 -15 / +70 +70 / +80	180	60	±150 ±180 ±150	±90 ±120 ±90	±30 ±60 ±30
Data cables		T/0/ T00			±130	±90	±30
	CFROBOT3	-25 / -15 -15 / +70 +70 / +80	180	60	±150 ±180 ±150	±90 ±120 ±90	±30 ±60 ±30
Measuring system ca	ables						
	CFROBOT4	-25 / -15 -15 / +70 +70 / +80	180	60	±150 ±180 ±150	±90 ±120 ±90	±30 ±60 176 ±30
Fibre optic cables							
	CFROBOT5	-25 / -15 -15 / +70 +70 / +80	180	60	±150 ±180 ±150	±90 ±120 ±90	±30 ±60 180 ±30
Motor cables							
	CFROBOT6	-25 / -15 -15 / +70 +70 / +80	180	60	±150 ±180 ±150	±90 ±120 ±90	±30 ±60 182 ±30
	CFROBOT7	-25 / -15 -15 / +70 +70 / +80	180	60	±150 ±180 ±150	±90 ±120 ±90	±30 ±60 ±30
Spindle cable/Single	core						
4.7	CFROBOT	-35 / -25 -15 / +80 +80 / +90	180	60	±150 ±180 ±150	±90 ±120 ±90	±30 ±60 188 ±30
Bus cables							
	CFROBOT8	-25 / -15 -15 / +60 +60 / +70	180	60	±150 ±180 ±150	±90 ±120 ±90	±30 ±60 190 ±30
	CFROBOT8.PLUS New	-25 / -15 -15 / +60 +60 / +70	360	60	±330 ±360 ±330	±240 ±270 ±240	±150 ±180 194 ±150
Hybrid cables							
	CFROBOT9	-25 / -15 -15 / +70 +70 / +80	180	60	±150 ±180 ±150	±90 ±120 ±90	±30 ±60 198 ±30

^{*} Higher number of cycles? Calculate service life online: > www.igus.co.uk/chainflexlife

Control cable | PUR New

- For torsion applications
- PUR outer jacket
- Oil resistant and coolant-resistant
- Flame-retardant

- PVC and halogen-free
- Notch-resistant
- Hydrolysis and microbe-resistant

Dynamic information

Temperature

Bend radius

e-chain® twisted min. 6.8 x d

flexible min. 5 x d

fixed min. 4 x d

e-chain® twisted -25 °C to +80 °C

flexible -40 °C to +80 °C (following DIN EN 60811-504)

-50 °C to +80 °C (following DIN EN 50305) fixed

v max. twisted 180 °/s

a max. 60 °/s² twisted

Movement type Robots and 3D movements, Class 1

Torsion ± 180°, with 1 m cable length, Class 3

Cable structure

Conductor

Finely stranded conductor consisting of bare copper wires (following DIN EN

60228).

Core insulation

Core structure

Number of cores < 12: Cores wound in a layer with short pitch length.

Number of cores ≥ 12: Cores in bundles and wound together around a centre for high tensile stresses with optimised short pitch length and directions, espe-

cially low-torsion structure.

Core identification Cores < 0.5mm²: Colour code in accordance with DIN 47100.

Mechanically high-quality TPE mixture.

Cores ≥ 0.5mm²: Black cores with white numerals, one green-yellow core.

CF77.UL.03.04.INI: brown, blue, black, white

Low-adhesion, halogen-free, highly abrasion-resistant PUR mixture, adapted to suit the requirements in e-chains® (following DIN EN 50363-10-2).

Colour: Window grey (similar to RAL 7040)

Variations ► Product range table

Electrical information

Outer jacket

300/500 V (following DIN VDE 0298-3) Nominal voltage

chainflex® CF77,UL,D

2000 V (following DIN EN 50395) Testing voltage

Class 5.1.3.3

5 6 7 highest

Properties and approvals

UV resistance Medium

Oil resistance Oil-resistant (following DIN EN 50363-10-2), Class 3

Basic requirements Travel distance Oil resistance

Torsion

Offshore MUD-resistant following NEK 606 - status 2009

Flame-retardant According to IEC 60332-1-2, CEI 20-35, FT1, VW-1

Silicone-free Free from silicone which can affect paint adhesion (following PV 3.10.7 - status 1992)

Halogen-free Following DIN EN 60754

UL/CSA Cores < 0.5 mm²: Style 10493 and 20233, 300 V, 80 °C Cores ≥ 0.5 mm²: Style 11323 and 21223, 1000 V, 80 °C

Type approval certificate No. 61 935-14 HH

Certificate No. RU C-DE.ME77.B.01254 (TR ZU)

NFPA Following NFPA 79-2012, chapter 12.9

EAC Certificate No. C-DE.PB49.B.00416 (fire protection)

CEI Following CEI 20-35

RoHS-II Lead-free Following 2011/65/EC (RoHS-II)

According to ISO Class 1, material/cable tested by IPA according to Cleanroom

DIN EN ISO 14644-1

DESINA According to VDW, DESINA standardisation

Following 2014/35/EU

Guaranteed service life

DNV-GL

Cycles *	5 million	7.5 million	10 million
Temperature, from/to [°C]	Torsion max. [°/m]	Torsion max. [°/m]	Torsion max. [°/m]
-25/-15	±150	±90	±30
-15/+70	±180	±120	±60
+70/+80	±150	±90	±30

^{*} Higher number of double strokes? Calculate service life online: > www.igus.co.uk/chainflexlife

Typical application areas

- For heavy-duty applications, class 5
- Especially for robots and 3D movements, Class 1
- Almost unlimited resistance to oil, Class 3
- Torsion ± 180°, with 1m cable length, Class 3
- Indoor and outdoor applications with average sun radiation
- Robots, handling, spindle drives

chainflex® CF77.UL.D

Control cable | PUR New

Class 5.1.3.3

Basic requirements Travel distance Oil resistance Torsion

Example image

Part No.	Number of cores and conductor nominal cross section	Outer diameter (d) max.	Copper index	Weight
	[mm ²]	[mm]	[kg/km]	[kg/km]
CF77.UL.02.03.INI 12)	3x0.25	5.0	8	29
CF77.UL.02.04.D	4x0.25	5.5	11	35
W CF77.UL.02.05.D	5x0.25	6.0	13	41
w CF77.UL.02.07.D	7x0.25	6.5	18	51
CF77.UL.02.12.D	12x0.25	9.0	30	77
CF77.UL.02.18.D	18x0.25	10.5	45	114
W CF77.UL.02.25.D	25x0.25	11.5	63	154
CF77.UL.03.04.INI 12)	4x0.34	6.0	16	39
CF77.UL.05.04.D	4G0.5	6.0	21	43
CF77.UL.05.05.D	5G0.5	6.5	26	50
CF77.UL.05.07.D	7G0.5	7.5	39	78
CF77.UL.05.12.D	12G0.5	10.0	63	129
CF77.UL.05.18.D	18G0.5	12.0	94	179
CF77.UL.05.25.D	25G0.5	14.0	129	238
CF77.UL.05.30.D	30G0.5	15.0	155	315
CF77.UL.07.03.D	3G0.75	6.5	23	54
CF77.UL.07.04.D	4G0.75	7.0	30	63
CF77.UL.07.05.D	5G0.75	7.5	38	73
CF77.UL.07.07.D	7G0.75	8.5	53	103
CF77.UL.07.12.D	12G0.75	12.0	90	187
CF77.UL.07.18.D	18G0.75	13.5	134	251
CF77.UL.07.20.D	20G0.75	14.5	149	282
CF77.UL.07.25.D	25G0.75	16.0	186	356
CF77.UL.07.36.D	36G0.75	19.0	279	505
CF77.UL.07.42.D	42G0.75	21.0	341	580
CF77.UL.10.02.D	2x1.0	6.5	20	53
CF77.UL.10.03.D	3G1.0	6.5	30	63
CF77.UL.10.04.D	4G1.0	7.0	40	77
CF77.UL.10.05.D	5G1.0	8.0	50	94
CF77.UL.10.07.D	7G1.0	9.0	70	115
CF77.UL.10.12.D	12G1.0	12.5	119	225
CF77.UL.10.18.D	18G1.0	15.0	178	326
CF77.UL.10.25.D	25G1.0	17.5	248	436
CF77.UL.10.42.D	42G1.0	22.5	433	679

12) Outer jacket	colour: Co	olza vellow	(similar	to RAI	1021)

Note: The given outer diameters are maximum values and may tend toward lower tolerance limits.

Part No.	Number of cores and conductor nominal cross section	Outer diameter (d) max.	Copper index	Weight
	[mm ²]	[mm]	[kg/km]	[kg/km]
CF77.UL.15.03.D	3G1.5	7.5	45	83
CF77.UL.15.04.D	4G1.5	8.0	60	102
CF77.UL.15.05.D	5G1.5	8.5	75	121
CF77.UL.15.07.D 17)	7G1.5	10.5	104	167
CF77.UL.15.12.D	12G1.5	14.0	178	296
CF77.UL.15.18.D	18G1.5	17.0	267	459
CF77.UL.15.25.D	25G1.5	19.5	371	605
CF77.UL.15.36.D	36G1.5	23.5	551	848
CF77.UL.15.42.D	42G1.5	26.5	676	987
CF77.UL.25.03.D	3G2.5	8.5	75	119
CF77.UL.25.04.D	4G2.5	9.5	100	149
CF77.UL.25.05.D	5G2.5	10.5	124	183
CF77.UL.25.07.D 17)	7G2.5	12.5	174	259
CF77.UL.25.12.D	12G2.5	17.0	297	451

Order example: CF77.UL.02.04.D – to your desired length (0.5 m steps) CF77.UL.D chainflex® series .02 Code nominal cross section .04 Code number of cores

Note: The given outer diameters are maximum values and may tend toward lower tolerance limits.

Online order ▶ www.chainflex.co.uk/CF77.UL.D

Available from stock. Ready for delivery in 24hrs or today.* *The delivery times indicated correspond to the average time until the ordered goods are dispatched.

G = with green-yellow earth core **x**= without earth core

G = with green-yellow earth core x = without earth core

Control cable | PUR

- For torsion applications
- PUR outer jacket
- Shielded
- Oil resistant and coolant-resistant
- Flame-retardant
- PVC and halogen-free
- Notch-resistant
- Hydrolysis and microbe-resistant

Dynamic information

Temperature

Bend radius

e-chain® twisted min. 10 x d

flexible min. 8 x d

fixed min. 5 x d

e-chain® twisted -25 °C to +80 °C

flexible -40 °C to +80 °C (following DIN EN 60811-504)

-50 °C to +80 °C (following DIN EN 50305) fixed

v max. twisted 180 °/s

a max. 60 °/s² twisted

Movement type Robots and 3D movements, Class 1

Torsion ± 180°, with 1 m cable length, Class 3

Cable structure

Conductor

Stranded conductor in especially bending-resistant version consisting of bare

copper wires (following DIN EN 60228). Mechanically high-quality TPE mixture.

Core insulation

Black cores with white numerals, one green-yellow core.

Core identification

Element shield Extremely torsion-resistant tinned wound copper shield. Cover approx. 85% visual.

Outer jacket Low-adhesion, halogen-free, highly abrasion-resistant PUR mixture, adapted to

suit the requirements in e-chains® (following DIN EN 50363-10-2).

Colour: steel blue (similar to RAL 5011)

Electrical information

Nominal voltage

300/500 V (following DIN VDE 0298-3)

2000 V (following DIN EN 50395) Testing voltage

Properties and approvals

UV resistance High

Oil resistance Oil-resistant (following DIN EN 50363-10-2), Class 3

chainflex® CFR0B0T2

Flame-retardant According to IEC 60332-1-2, CEI 20-35, FT1, VW-1

Class 6.1.3.3

Halogen-free

Basic requirements Travel distance Oil resistance Torsion

Silicone-free

Free from silicone which can affect paint adhesion (following

PV 3.10.7 - status 1992) Following DIN EN 60754

UL/CSA

Style 10493 and 20317, 300 V, 80 °C

Following NFPA 79-2012, chapter 12.9

Certificate No. RU C-DE.ME77.B.01254 (TR ZU)

Certificate No. C-DE.PB49.B.00416 (fire protection)

Following CEI 20-35

Following 2011/65/EC (RoHS-II)

C€_{CE}

According to ISO Class 1. The outer jacket material of this series complies with the CF77.UL.05.12.D - tested by IPA according to standard DIN EN ISO 14644-1

Following 2014/35/EU

Guaranteed service life

Cycles *	5 million	7.5 million	10 million
Temperature, from/to [°C]	Torsion max. [°/m]	Torsion max. [°/m]	Torsion max. [°/m]
-25/-15	±150	±90	±30
-15/+70	±180	±120	±60
+70/+80	±150	±90	±30
* Higher number of double strok	kes? Calculate service life or	nline: ▶ www.igus.co.uk/chainfl	exlife

Typical application areas

- For heavy duty applications with torsion movements, Class 6
- Especially for robots and 3D movements, Class 1
- Almost unlimited resistance to oil, Class 3
- Torsion ± 180°, with 1m cable length, Class 3
- Indoor and outdoor applications, UV resistant
- Robots, handling, spindle drives

Part No.		Outer diameter (d) max.	Copper index	Weight	
	[mm ²]	[mm]	[kg/km]	[kg/km]	
CFROBOT2.07.04.C	(4G0.75)C	8.5	42	81	
CFROBOT2.07.05.C	(5G0.75)C	8.5	51	91	
CFROBOT2.07.07.C	(7G0.75)C	10.0	71	126	
CFROBOT2.07.12.C	(12G0.75)C	14.0	122	208	
CFROBOT2.07.18.C	(18G0.75)C	16.5	185	309	

36-month guarantee ... 1,354 types from stock ... no cutting charges

Note: The given outer diameters are maximum values and may tend toward lower tolerance limits. G = with green-yellow earth core x= without earth core

Data cable | PUR

- For torsion applications
- PUR outer jacket
- Shielded
- Oil resistant and coolant-resistant
- Flame-retardant
- Notch-resistant
- Hydrolysis and microbe-resistant

Dynamic information

Temperature

Bend radius

e-chain® twisted min. 10 x d

flexible min. 8 x d

fixed min. 5 x d

e-chain® twisted -25 °C to +80 °C

flexible -40 °C to +80 °C (following DIN EN 60811-504)

-50 °C to +80 °C (following DIN EN 50305) fixed

v max. twisted 180 °/s

60 °/s² twisted a max.

Movement type Robots and 3D movements, Class 1

Torsion ± 180°, with 1 m cable length, Class 3

Cable structure

Conductor Stranded conductor in especially bending-resistant version consisting of bare

> copper wires (following DIN EN 60228). Mechanically high-quality TPE mixture.

Core insulation

Core identification

Colour code in accordance with DIN 47100.

Overall shield

Extremely torsion-resistant tinned wound copper shield.

Cover approx. 85% visual.

Outer jacket

Low-adhesion, halogen-free, highly abrasion-resistant PUR mixture, adapted to

suit the requirements in e-chains® (following DIN EN 50363-10-2).

Colour: steel blue (similar to RAL 5011)

Electrical information

Nominal voltage 300/500 V (following DIN VDE 0298-3)

2000 V (following DIN EN 50395) Testing voltage

Properties and approvals

UV resistance High

Oil resistance Oil-resistant (following DIN EN 50363-10-2), Class 3

chainflex® CFROBOT3

Flame-retardant According to IEC 60332-1-2, CEI 20-35, FT1, VW-1

Class 6.1.3.3

Basic requirements Travel distance Oil resistance Torsion

Silicone-free

Free from silicone which can affect paint adhesion (following

PV 3.10.7 - status 1992)

UL/CSA

Style 10497 and 20911, 300 V, 80 °C

NFPA

Following NFPA 79-2012, chapter 12.9

EAC CTP CTP Certificate No. RU C-DE.ME77.B.01254 (TR ZU)

Certificate No. C-DE.PB49.B.00416 (fire protection)

Following CEI 20-35

Lead-free Following 2011/65/EC (RoHS-II)

(Ece

According to ISO Class 1. The outer jacket material of this series complies with the CF77.UL.05.12.D - tested by IPA according to standard DIN EN ISO 14644-1

Following 2014/35/EU

Guaranteed service life

Cleanroom

Cycles *	5 million	7.5 million	10 million
Temperature, from/to [°C]	Torsion max. [°/m]	Torsion max. [°/m]	Torsion max. [°/m]
-25/-15	±150	±90	±30
-15/+70	±180	±120	±60
+70/+80	±150	±90	±30

^{*} Higher number of double strokes? Calculate service life online: ▶ www.igus.co.uk/chainflexlife

Typical application areas

- For heavy duty applications with torsion movements, Class 6
- Especially for robots and 3D movements, Class 1
- Almost unlimited resistance to oil, Class 3
- Torsion ± 180°, with 1m cable length, Class 3
- Indoor and outdoor applications, UV resistant
- Robots, handling, spindle drives

Part No.	Number of cores and conductor nominal cross section [mm²]	Outer diameter (d) max. [mm]	Copper index [kg/km]	Weight [kg/km]
	[111111]	[111111]	[KY/KIII]	[NY/NII]
CFROBOT3.02.03.02	(3x(2x0.25))C	9.0	32	83
CFROBOT3.02.04.02	(4x(2x0.25))C	10.5	38	100
CFROBOT3.02.06.02	(6x(2x0.25))C	11.5	52	136
CFROBOT3.02.08.02	(8x(2x0.25))C	14.0	66	153
CFROBOT3.05.05.02	(5x(2x0.5))C	12.5	75	159

36-month guarantee ... 1,354 types from stock ... no cutting charges

Note: The given outer diameters are maximum values and may tend toward lower tolerance limits. G = with green-vellow earth core x= without earth core

Measuring system cable | PUR

- For torsion applications
- PUR outer jacket
- Shielded
- Oil resistant and coolant-resistant
- Flame-retardant
- PVC and halogen-free
- Notch-resistant
- Hydrolysis and microbe-resistant

Dynamic information

Bend radius

e-chain® twisted min. 10 x d

flexible min. 8 x d

fixed min. 5 x d

Temperature

e-chain® twisted -25 °C to +80 °C

180 °/s

flexible

-40 °C to +80 °C (following DIN EN 60811-504)

-50 °C to +80 °C (following DIN EN 50305) fixed

v max.

a max.

twisted

60 °/s² twisted

Movement type Robots and 3D movements, Class 1

Torsion ± 180°, with 1 m cable length, Class 3

Cable structure

Stranded conductor in especially bending-resistant version consisting of bare Conductor

> copper wires (following DIN EN 60228). Mechanically high-quality TPE mixture.

Core insulation

Core identification

According to measuring system specification.

► Product range table

Extremely torsion-resistant tinned wound copper shield.

Overall shield

Extremely torsion-resistant tinned wound copper shield.

Cover approx. 80% visual.

Low-adhesion, halogen-free, highly abrasion-resistant PUR mixture, adapted to

suit the requirements in e-chains® (following DIN EN 50363-10-2).

Colour: steel blue (similar to RAL 5011) Variations ► Product range table

Electrical information

50 V Nominal voltage

chainflex® CFROBOT4

Testing voltage 500 V

Class 6.1.3.3

Basic requirements Travel distance Oil resistance Torsion

Properties and approvals

UV resistance High

Oil resistance Oil-resistant (following DIN EN 50363-10-2), Class 3

Flame-retardant According to IEC 60332-1-2, CEI 20-35, FT1, VW-1

Silicone-free Free from silicone which can affect paint adhesion (following

PV 3.10.7 - status 1992) Following DIN EN 60754 Halogen-free

UL/CSA Style 1589 and 20236, 30 V, 80 °C

Following NFPA 79-2012, chapter 12.9

Certificate No. RU C-DE.ME77.B.01218 (TR ZU)

Certificate No. C-DE.PB49.B.00416 (fire protection)

CEI CEI Following CEI 20-35

RoHS-II Lead-free Following 2011/65/EC (RoHS-II)

> According to ISO Class 1. The outer jacket material of this series complies with the CF77.UL.05.12.D - tested by IPA according to standard DIN EN ISO 14644-1

Following 2014/35/EU

Guaranteed service life

(Ece

Cleanroom

Cycles *	5 million	7.5 million	10 million
Temperature, from/to [°C]	Torsion max. [°/m]	Torsion max. [°/m]	Torsion max. [°/m]
-25/-15	±150	±90	±30
-15/+70	±180	±120	±60
+70/+80	±150	±90	±30

^{*} Higher number of double strokes? Calculate service life online: > www.igus.co.uk/chainflexlife

36-month guarantee ... 1,354 types from stock ... no cutting charges

Typical application areas

- For heavy duty applications with torsion movements, Class 6
- Especially for robots and 3D movements, Class 1
- Almost unlimited resistance to oil, Class 3
- Torsion ± 180°, with 1m cable length, Class 3
- Indoor and outdoor applications, UV resistant Robots, handling, spindle drives

Measuring system cable | PUR

Class 6.1.3.3

Basic requirements Travel distance Oil resistance Torsion

Order example: CFROBOT4.009 - In your required length (0.5m steps)

CFROBOT4 chainflex® series .009 Code measuring system type

Available from stock. Ready for delivery in 24hrs or today.* *The delivery times indicated correspond to the average time until the ordered goods are dispatched.

Online order ▶ www.chainflex.co.uk/CFROBOT4

igus° chainflex° CFR0B0T4

Example image

Part No.	Number of cores and conductor nominal cross section	Outer diameter eter (d) max.	Copper index	Weight	Part No.	Core group	Colour code	
	[mm²]	[mm]	[kg/km]	[kg/km]				
CFROBOT4.001	(3x(2x0.14)C+(4x0.14)+(2x0.5))C	10.5	62	115	CFROBOT4.001	3x(2x0.14)C	green/yellow, black/brown, red/orange	
						4x0.14	grey/blue/white-yellow/white-black	
						2x0.5	brown-red/brown-blue	
CFROBOT4.006	(3x(2x0.14)C+(4x0.14)	11.5	74	138	CFROBOT4.006	3x(2x0.14)C	green/yellow, black/brown, red/orange	
	+(4x0.22)+(2x0.5))C					(4x0.14)	grey/blue/white-yellow/white-black	
						(4x0.22)	brown-yellow/brown-grey/green-black/green-red	
						(2x0.5)	brown-red/brown-blue	C
CFROBOT4.009	(4x(2x0.25)+(2x0.5))C	9.5	48	90	CFROBOT4.009	4x(2x0.25)	brown/green, blue/violet, grey/pink, red/black	
						2x0.5	white, brown	G
CFROBOT4.015	(4x(2x0.14)+4x0.5)C	9.0	49	93	CFROBOT4.015	4x(2x0.14)	brown/green, yellow/violet, grey/pink, red/black	
						4x0.5	blue, white, brown-green, white-green	
CFROBOT4.028 13)	(2x(2x0.20)+(2x0.38))C	7.5	44	72	CFROBOT4.028 13)	2x(2x0.20)	green/yellow, pink/blue	600
						(2x0.38)	red/black	

¹³⁾ Colour outer jacket: yellow-green (RAL 6018)
Note: The given outer diameters are maximum values and may tend toward lower tolerance limits.
G = with green-yellow earth core x= without earth core

- For torsion applications
- TPE outer jacket
- Oil and bio-oil-resistant
- UV-resistant

- Low-temperature-flexible
- Hydrolysis and microbe-resistant
- PVC and halogen-free

Dynamic information

Bend radius

e-chain® twisted min. 10 x d

flexible min. 8 x d

fixed min. 5 x d

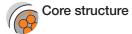
Temperature e-chain® twisted -35 °C to +80 °C

> flexible -50 °C to +80 °C (following DIN EN 60811-504)

-55 °C to +80 °C (following DIN EN 50305) fixed

v max. twisted 180 °/s

a max. 60 °/s² twisted


Movement type Robots and 3D movements, Class 1

Torsion ± 180°, with 1 m cable length, Class 3

Cable structure

50/125 µm, 62.5/125 µm special fixed wire elements with aramid strain relief.

FOC cores wound with high-tensile aramid dampers around a GRP central element.

► Product range table

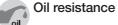
chainflex $^{\circ}$ CFROBOT5

Low-adhesion, extremely abrasion-resistant and highly flexible TPE mixture,

adapted to suit the requirements in e-chains®.

Colour: Jet black (similar to RAL 9005)

Class 6.1.4.3


Basic requirements Travel distance Oil resistance Torsion

High

Properties and approvals

UV resistance

Oil-resistant (in accordance with DIN EN 60811-404), bio-oil resistant (following VDMA 24568 with Plantocut 8 S-MB tested by DEA), Class 4

Free from silicone which can affect paint adhesion (following

PV 3.10.7 - status 1992) Halogen-free Following DIN EN 60754

Following 2011/65/EC (RoHS-II)

According to ISO Class 1. The outer jacket material of this series complies with

the CF9.15.07 - tested by IPA according to standard DIN EN ISO 14644-1

(Ece

Following 2014/35/EU

Guaranteed service life

Cycles *	5 million	7.5 million	10 million
Temperature, from/to [°C]	Torsion max. [°/m]	Torsion max. [°/m]	Torsion max. [°/m]
-35/-25	±150	±90	±30
-25/+70	±180	±120	±60
+70/+80	±150	±90	±30

Typical application areas

- Especially for robots and 3D movements, Class 1
- Almost unlimited resistance to oil, also to bio-oils, Class 4
- Torsion ± 180°, with 1m cable length, Class 3
- Indoor and outdoor applications, UV resistant
- Robots, handling

Part No.	Number of fibres/ Fibre diameter/ Conductor nominal cross section	Outer diameter (d) max.	Weight
		[mm]	[kg/km]
CFROBOT5.500 11)	2x62.5/125	8.5	53
CFROBOT5.501 11)	2x50/125	8.5	53

Note: The given outer diameters are maximum values and may tend toward lower tolerance limits. G = with green-yellow earth core x= without earth core

	m] [dB/km] Onm @ 1300nm
CFROBOT5.500 ≥ 200 ≥ 500 ≤ 3	$\leq 3.0 \qquad \leq 0.7 \qquad \text{orange with white numerals}$
CFROBOT5.501 ≥ 500 ≥ 500 ≤ 2	≤ 2.5 ≤ 0.7 blue with white numerals

Motor cable | PUR

- For torsion applications
- PUR outer jacket
- Oil resistant and coolant-resistant
- Flame-retardant

- PVC and halogen-free
- Notch-resistant
- Hydrolysis and microbe-resistant

Dynamic information

Bend radius

e-chain® twisted min. 10 x d

flexible min. 8 x d

fixed min. 5 x d

Temperature e-chain® twisted -25 °C to +80 °C

> flexible -40 °C to +80 °C (following DIN EN 60811-504)

-50 °C to +80 °C (following DIN EN 50305) fixed

v max. twisted 180 °/s

a max. twisted 60 °/s²

Movement type Robots and 3D movements, Class 1

Torsion ± 180°, with 1 m cable length, Class 3

Cable structure

Conductor

Stranded conductor in especially bending-resistant version consisting of bare

copper wires (following DIN EN 60228). Mechanically high-quality TPE mixture.

Core insulation

Core identification

Black cores with white numerals 1-2, one green-yellow core.

Outer jacket

Low-adhesion, halogen-free, highly abrasion-resistant PUR mixture, adapted to

suit the requirements in e-chains® (following DIN EN 50363-10-2).

Colour: steel blue (similar to RAL 5011)

Electrical information

Nominal voltage 600/1000 V (following DIN VDE 0298-3)

4000 V (following DIN EN 50395) Testing voltage

Properties and approvals

UV resistance High

Oil resistance Oil-resistant (following DIN EN 50363-10-2), Class 3

chainflex® CFR0B0T6

Flame-retardant According to IEC 60332-1-2, CEI 20-35, FT1, VW-1 Class 6.1.4.3

Basic requirements Travel distance Oil resistance Torsion

Silicone-free

Free from silicone which can affect paint adhesion (following

PV 3.10.7 - status 1992) Following DIN EN 60754

Halogen-free UL/CSA

Style 10492 and 21223, 1000 V, 80 °C

NFPA Following NFPA 79-2012, chapter 12.9

EAC

Certificate No. C-DE.PB49.B.00420 (fire protection)

Certificate No. RU C-DE.ME77.B.02324 (TR ZU)

Following CEI 20-35

Following 2011/65/EC (RoHS-II)

C€_{CE}

According to ISO Class 1. The outer jacket material of this series complies with the CF77.UL.05.12.D - tested by IPA according to standard DIN EN ISO 14644-1

Following 2014/35/EU

Guaranteed service life

Cycles *	5 million	7.5 million	10 million
Temperature, from/to [°C]	Torsion max. [°/m]	Torsion max. [°/m]	Torsion max. [°/m]
-25/-15	±150	±90	±30
-15/+70	±180	±120	±60
+70/+80	±150	±90	±30
* I. Bada an outside an last alles de la cata	-10 0-1	Barrier November 1980 and 1981 and 1981 and 1981	0

^{*} Higher number of double strokes? Calculate service life online: ▶ www.igus.co.uk/chainflexlife

Typical application areas

- For heavy duty applications with torsion movements, Class 6
- Especially for robots and 3D movements, Class 1
- Almost unlimited resistance to oil, Class 3
- Torsion ± 180°, with 1m cable length, Class 3
- Indoor and outdoor applications, UV resistant
- Robots, handling, spindle drives

Part No.	Number of cores and conductor nominal cross section		Copper index	Weight
	[mm ²]	[mm]	[kg/km]	[kg/km]
CFROBOT6.100.03 11)	3G10.0	15.5	297	388
CFROBOT6.160.03	3G16.0	18.0	475	578
CFROBOT6.250.03	3G25.0	25.5	737	895

Note: The given outer diameters are maximum values and may tend toward lower tolerance limits G = with green-vellow earth core x= without earth core

Motor cable | PUR

- For torsion applications
- PUR outer jacket
- Shielded
- Oil resistant and coolant-resistant
- Flame-retardant
- PVC and halogen-free
- Notch-resistant
- Hydrolysis and microbe-resistant

Dynamic information

Temperature

Bend radius

e-chain® twisted min. 10 x d

flexible min. 8 x d

fixed min. 5 x d

e-chain® twisted -25 °C to +80 °C

flexible -40 °C to +80 °C (following DIN EN 60811-504)

-50 °C to +80 °C (following DIN EN 50305) fixed

v max. twisted 180 °/s

a max. 60 °/s² twisted

Movement type Robots and 3D movements, Class 1

Torsion ± 180°, with 1 m cable length, Class 3

Cable structure

Stranded conductor in especially bending-resistant version consisting of bare Conductor

copper wires (following DIN EN 60228).

Core insulation Mechanically high-quality TPE mixture.

Core identification Power cores: Cores black with white numerals, one core green-yellow

2 Control pairs: Core black with white numerals.

1. Control core: 5 2. Control core: 6 3. Control core: 74. Control core: 8

4 Control pairs: Colour code in accordance with DIN 47100

Overall shield Extremely torsion-resistant tinned wound copper shield.

Cover approx. 85% visual.

Low-adhesion, halogen-free, highly abrasion-resistant PUR mixture, adapted to

suit the requirements in e-chains® (following DIN EN 50363-10-2).

Colour: steel blue (similar to RAL 5011)

Electrical information

Outer jacket

chainflex® CFROBOT7

600/1000 V (following DIN VDE 0298-3) Nominal voltage

Testing voltage 4000 V (following DIN EN 50395)

Basic requirements Travel distance Oil resistance Torsion

High

Properties and approvals

Class 6.1.3.3

UV resistance

Oil resistance Oil-resistant (following DIN EN 50363-10-2), Class 3

Flame-retardant According to IEC 60332-1-2, CEI 20-35, FT1, VW-1

Silicone-free Free from silicone which can affect paint adhesion (following

PV 3.10.7 - status 1992) Following DIN EN 60754 Halogen-free

UL/CSA Style 10492 and 21223, 1000 V, 80 °C

Following NFPA 79-2012, chapter 12.9

Certificate No. RU C-DE.ME77.B.02324 (TR ZU)

CTP CTP Certificate No. C-DE.PB49.B.00420 (fire protection)

CEI CEI Following CEI 20-35

RoHS-II Lead-free Following 2011/65/EC (RoHS-II)

> According to ISO Class 1. The outer jacket material of this series complies with the CF77.UL.05.12.D - tested by IPA according to standard DIN EN ISO 14644-1

CECE Following 2014/35/EU

Guaranteed service life

Cleanroom

Cycles *	5 million	7.5 million	10 million					
Temperature, from/to [°C]	Torsion max. [°/m]	Torsion max. [°/m]	Torsion max. [°/m]					
-25/-15	±150	±90	±30					
-15/+70	±180	±120	±60					
+70/+80	±150	±90	±30					
* Higher number of dou	* Higher number of double strokes? Calculate service life online: ▶ www.igus.co.uk/chainflexlife							

36-month guarantee ... 1,354 types from stock ... no cutting charges

Typical application areas

- For heavy duty applications with torsion movements, Class 6
- Especially for robots and 3D movements, Class 1
- Almost unlimited resistance to oil, Class 3
- Torsion ± 180°, with 1m cable length, Class 3
- Indoor and outdoor applications, UV resistant
- Robots, handling, spindle drives

Motor cable | PUR

Class 6.1.3.3

Basic requirements Travel distance Oil resistance Torsion

igus° chainflex° CFR0B0T7

Example image

Part No.	Number of cores and conductor nominal cross section [mm²]	Outer diameter (d) max. [mm]	Copper index [kg/km]	Weight [kg/km]
without control pair	[11111]	[11111]	[NG/NII]	[Ng/KITI]
CFROBOT7.15.03.C	(3G1.5)C	8.5	60	97
CFROBOT7.15.04.C	(4G1.5)C	9.0	77	120
CFROBOT7.25.03.C	(3G2.5)C	10.0	93	141
CFROBOT7.25.04.C	(4G2.5)C	10.5	119	172
CFROBOT7.60.04.C	(4G6.0)C	15.0	278	373
2 Control pairs				
CFROBOT7.15.15.02.02.C	(4G1.5+2x(2x1.5)C)C	16.5	197	304
CFROBOT7.25.15.02.02.C	(4G2.5+2x(2x1.5)C)C	16.5	243	348
4 Control pairs				
CFROBOT7.40.02.02.04.C	(4G4.0+4x(2x0.25)C)C	17.0	253	365

Note: The given outer diameters are maximum values and may tend toward lower tolerance limits. G = with green-yellow earth core x= without earth core

Order example: CFROBOT7.15.03.C – to your desired length (0.5m steps) CFROBOT7 chainflex® series .15 Code nominal cross section .03 Code number of cores

Online order ▶ www.chainflex.co.uk/CFROBOT7

Available from stock. Ready for delivery in 24hrs or today.*

Spindle cable/single core | TPE

For torsion applications

TPE outer jacket

Shielded

Oil and bio-oil-resistant

PVC-free

UV-resistant

Flame-retardant

Hydrolysis and microbe-resistant

Dynamic information

Temperature

Bend radius e-chain® twisted min. 10 x d flexible min. 8 x d

> fixed min. 5 x d

e-chain® twisted -35 °C to +90 °C

flexible -45 °C to +100 °C (following DIN EN 60811-504) -50 °C to +100 °C (following DIN EN 50305) fixed

twisted 180 °/s

60 °/s² twisted a max.

Movement type Robots and 3D movements, Class 1

Torsion ± 180°, with 1 m cable length, Class 3

Cable structure

v max.

Extremely bend-resistant cable. Conductor

Core insulation Mechanically high-quality TPE mixture.

Overall shield Extremely torsion-resistant tinned wound copper shield. Cover approx. 90% visual.

Outer jacket Low-adhesion, extremely abrasion-resistant and highly flexible TPE mixture,

adapted to suit the requirements in e-chains®.

Colour: Jet black (similar to RAL 9005)

Electrical information

chainflex® CFROBOT

Nominal voltage 600/1000 V (following DIN VDE 0298-3)

4000 V (following DIN EN 50395) Testing voltage

Travel distance Oil resistance Class 6.1.4.3

Basic requirements

Torsion

Properties and approvals

Flame-retardant

NFPA

UV resistance High

Oil resistance Oil-resistant (following DIN EN 60811-404), bio-oil-resistant (following VDMA

> 24568 with Plantocut 8 S-MB tested by DEA), Class 4 According to IEC 60332-1-2, CEI 20-35, FT1, VW-1

Silicone-free Free from silicone which can affect paint adhesion (following PV 3.10.7 – status

1992)

Following NFPA 79-2012, chapter 12.9

UL/CSA Style 10258 and 21387, 1000 V, 90 °C

Certificate No. RU C-DE.ME77.B.02324 (TR ZU)

Certificate No. C-DE.PB49.B.00420 (fire protection)

Following 2011/65/EC (RoHS-II)

CEI Following CEI 20-35 RoHS-II Lead-free

According to ISO Class 1. The outer jacket material of this series complies with Cleanroom

CF34.UL.25.04.D - tested by IPA according to standard DIN EN ISO 14644-1

(**E**CE Following 2014/35/EU

Guaranteed service life

Cycles *	5 million	7.5 million	10 million
Temperature, from/to [°C]	Torsion max. [°/m]	Torsion max. [°/m]	Torsion max. [°/m]
-35/-25	±150	±90	±30
-25/+70	±180	±120	±60
+70/+80	±150	±90	±30

^{*} Higher number of double strokes? Calculate service life online: ▶ www.igus.co.uk/chainflexlife

Typical application areas

- For heavy duty applications with torsion movements, Class 6
- Especially for robots and 3D movements, Class 1
- Almost unlimited resistance to oil, also to bio-oils, Class 4
- Torsion ± 180°, with 1m cable length, Class 3
- Indoor and outdoor applications, UV resistant
- Robots, handling, spindle drives

Part No.	Number of cores and conductor nominal cross section	(d) max.	Copper index	Weight	
	[mm²]	[mm]	[kg/km]	[kg/km]	
CFROBOT.035	(1x10.0)C	10.5	125	200	
CFROBOT.036	(1x16.0)C	12.0	189	280	
CFROBOT.037	(1x25.0)C	14.5	298	434	
CFROBOT.038	(1x35.0)C	15.5	403	546	

36-month guarantee ... 1,354 types from stock ... no cutting charges

Note: The given outer diameters are maximum values and may tend toward lower tolerance limits. G = with green-yellow earth core x= without earth core

Bus cable | PUR

- For torsion applications
- PUR outer jacket
- Shielded
- Oil resistant and coolant-resistant
- Flame-retardant
- Notch-resistant
- Hydrolysis and microbe-resistant

Now with **UL 300 V** (PoE-capable)

Dynamic information

Bend radius e-chain® twisted min. 10 x d

flexible min. 8 x d min. 5 x d fixed

Temperature e-chain® twisted -25 °C to +70 °C

flexible -40 °C to +70 °C (following DIN EN 60811-504) -50 °C to +70 °C (following DIN EN 50305) fixed

v max. twisted

a max. twisted $60 \, ^{\circ}/\mathrm{s}^{2}$

Movement type Robots and 3D movements, Class 1

± 180°, with 1 m cable length, Class 3 Torsion

Cable structure

Conductor Stranded conductor in especially bending-resistant version consisting of bare

copper wires (following DIN EN 60228).

Core insulation According to bus specification.

Core structure According to bus specification.

Core identification According to bus specification.

► Product range table Intermediate layer Foil taping over the external layer.

Overall shield Torsion resistant tinned wound copper shield.

Cover approx. 80% visual.

Low-adhesion, halogen-free, highly abrasion-resistant PUR mixture, adapted to

suit the requirements in e-chains® (following DIN EN 50363-10-2).

Colour: steel blue (similar to RAL 5011)

Electrical information

chainflex® CFR0B0T8

Outer jacket

Nominal voltage 50 V

> Testing voltage 500 V

Class 6.1.3.3

Properties and approvals

UV resistance High

Oil resistance Oil-resistant (following DIN EN 50363-10-2), Class 3

Basic requirements Travel distance Oil resistance

Torsion

According to IEC 60332-1-2, CEI 20-35, FT1 Flame-retardant

Free from silicone which can affect paint adhesion (following PV 3.10.7 – status Silicone-free

1992) UL/CSA Style 1589 and 20236, 30 V, 80 °C

CFROBOT8.045-CFROBOT8.049: Style 1589 and 20236, 300 V, 80°C

Certificate No. RU C-DE.ME77.B.01218 (TR ZU)

CTP Certificate No. C-DE.PB49.B.00416 (fire protection)

CEI Following CEI 20-35

RoHS-II Lead-free Following 2011/65/EC (RoHS-II)

Cleanroom According to ISO Class 1. The outer jacket material of this series complies with CF77.UL.05.12.D - tested by IPA according to standard DIN EN ISO 14644-1

CE_{CE} Following 2014/35/EU

Guaranteed service life

Cycles *	5 million	7.5 million	10 million
Temperature, from/to [°C]	Torsion max. [°/m]	Torsion max. [°/m]	Torsion max. [°/m]
-25/-15	±150	±90	±30
-15/+60	±180	±120	±60
+60/+70	±150	±90	±30

^{*} Higher number of double strokes? Calculate service life online: > www.igus.co.uk/chainflexlife

36-month guarantee ... 1,354 types from stock ... no cutting charges

Typical application areas

- For heavy duty applications with torsion movements, Class 6
- Especially for robots and 3D movements, Class 1
- Almost unlimited resistance to oil, also to bio-oils, Class 3
- Torsion ± 180°, with 1m cable length, Class 3
- Indoor and outdoor applications, UV resistant
- Robots, handling, spindle drives

Bus cable | PUR

Class 6.1.3.3

Basic requirements
Travel distance
Oil resistance
Torsion

igus° chainflex° CFR0B0T8

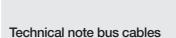
Example image

Part No.	Number of cores and conductor nom- inal cross section	Outer diameter (d) max.	Copper index	Weight	Part No.	Characteristic wave impedance approx.	Core group	Colour code	
	[mm²]	[mm]	[kg/km]	[kg/km]		[Ω]			
Profibus (1x2x0.64mm))								
CFROBOT8.001	(2x0.35)C	8.0	27	60	CFROBOT8.001	150	(2x0.35)C	red, green	
CAN-Bus									
CFROBOT8.022	(4x0.5)C	7.5	41	70	CFROBOT8.022	120	(4x0.5)C	white, green, brown, yellow (star-quad stranding)	
DeviceNet									
CFROBOT8,030	(2xAWG24)C+(2xAWG22)C	9.5	29	74	CFROBOT8,030	120	(2xAWG24)C	white/blue	
							2xAWG22	red, black	C
Ethernet/CAT5e/PoE									
CFROBOT8.045	4x(2x0.14)C	9.5	48	90	CFROBOT8.045	100	4x(2x0.14)C	white-green/green, white-orange/orange, white-blue/blue, white-brown/brown	G
Ethernet/CAT6/PoE									
CFROBOT8.049	4x(2x0.14)C	9.5	49	90	CFROBOT8.049	100	4x(2x0.14)C	white-green/green, white-orange/orange, white-blue/blue, white-brown/brown	80
Ethernet/CAT6A									
CFROBOT8.050	4x(2x0.15)C	10.5	51	124	CFROBOT8.050	100	4x(2x0.15)C	white-green/green, white-orange/orange, white-blue/blue, white-brown/brown	
Ethernet/CAT7									
CFROBOT8.052	4x(2x0.15)C	10.5	52	126	CFROBOT8.052	100	4x(2x0.15)C	white-green/green, white-orange/orange, white-blue/blue, white-brown/brown	
Profinet									
CFROBOT8.060	(2x(2x0.34))C	8.5	34	68	CFROBOT8.060	100	(2x(2x0.34))C	white/blue, yellow/orange	

Note: The given outer diameters are maximum values and may tend toward lower tolerance limits. G = with green-yellow earth core <math>x = without earth core

EtherCAT.

Order example: CFROBOT8.052 - to your desired length (0.5m steps) CFROBOT8 chainflex® series .052 Code bus type



Online order ▶ www.chainflex.co.uk/CFROBOT8

Available from stock. Ready for delivery in 24hrs or today.*

*The delivery times indicated correspond to the average time until the ordered goods are dispatched.

chainflex® bus cables have been specially developed and tested for continuously moving use in e-chains®. Depending on the material used for the outer jacket and on the underlying construction principle, the bus cables are designed for different mechanical requirements and resistance to diverse media. The cables have been electrically designed in such a way that, on the one hand, the electrical requirements of the respective bus specification are reliably met and, on the other, that greater value is placed on a high degree of EMC reliability. It is also ensured that the electrical values remain stable over the long term in spite of permanent movement. The overall quality of transmission in a complete bus communication system, however, is not solely dependent on the cable used. What is also essential is that all components (electronic parts, connecting system and cable) are precisely matched to each other and that the maximum transmission lengths, which are dependent on the respective system, are adhered to with regard to the data transmission rates needed. A cable is thus not solely responsible for the reliable transmission of signals. igus® advises you when you are designing your bus system so that all these factors are taken into account and, with extensive tests, helps you to ensure the process reliability of your system from the very beginning.

chainflex® CFROBOT8.PLUS

Bus cable | PUR New

- For torsion applications
- PUR outer jacket
- Shielded
- Oil resistant and coolant-resistant
- Flame-retardant
- Notch-resistant
- Hydrolysis and microbe-resistant

World first! ±360°/m for robots

Dynamic information

Bend radius

e-chain® twisted min. 10 x d

flexible min. 8 x d

min. 5 x d fixed

Temperature e-chain® twisted -25 °C to +70 °C

flexible -40 °C to +70 °C (following DIN EN 60811-504)

fixed -50 °C to +70 °C (following DIN EN 50305)

v max. twisted

a max. twisted

Movement type

Torsion ± 360°, with 1m cable length, Class 4 Torsion

Cable structure

Conductor

Stranded conductor in especially bending-resistant version consisting of bare

copper wires (following DIN EN 60228).

Robots and 3D movements, Class 1

 $60 \, ^{\circ}/\mathrm{s}^{2}$

Core insulation

According to bus specification.

Core structure

According to bus specification.

Core identification According to bus specification.

► Product range table

Intermediate layer

Foil taping over the external layer.

Overall shield

Torsion resistant tinned wound copper shield.

Cover approx. 80% visual.

Low-adhesion, halogen-free, highly abrasion-resistant PUR mixture, adapted Outer jacket

to suit the requirements in e-chains® (following DIN EN 50363-10-2).

Colour: steel blue (similar to RAL 5011)

Electrical information

chainflex® CFROBOT8,PLUS

50 V Nominal voltage

Testing voltage 500 V

Basic requirements Travel distance Oil resistance Torsion

Properties and approvals

Class 6.1.3.4

UV resistance

High

Oil resistance Oil-resistant (following DIN EN 50363-10-2), Class 3

Flame-retardant According to IEC 60332-1-2, CEI 20-35, FT1

Silicone-free

Free from silicone which can affect paint adhesion (following PV 3.10.7 – status

1992)

Halogen-free

Following DIN EN 60754

UL/CSA Style 1589 and 20236, 30 V, 80 °C

Certificate No. RU C-DE.ME77.B.01218 (TR ZU)

Certificate No. C-DE.PB49.B.00416 (fire protection)

Following CEI 20-35

Following 2011/65/EC (RoHS-II)

According to ISO Class 1. The outer jacket material of this series complies with

CF77.UL.05.12.D - tested by IPA according to standard DIN EN ISO 14644-1

Following 2014/35/EU

Guaranteed service life

Cleanroom

Cycles *	5 million	7.5 million	10 million
Temperature, from/to [°C]	Torsion max. [°/m]	Torsion max. [°/m]	Torsion max. [°/m]
-25/-15	±330	±240	±150
-15/+60	±360	±270	±180
+60/+70	±330	±240	±150

Higher number of double strokes? Calculate service life online: ▶ www.igus.co.uk/chainflexlife

Typical application areas

- For heavy duty applications with torsion movements, Class 6
- Especially for robots and 3D movements, Class 1
- Almost unlimited resistance to oil, also to bio-oils, Class 3
- Torsion ± 360°, with 1m cable length, Class 4
- Indoor and outdoor applications, UV resistant
- Robots, handling, spindle drives

chainflex® CFROBOT8.PLUS

Bus cable | PUR New

Class 6.1.3.4

Basic requirements Travel distance Oil resistance Torsion

Part No.	Number of cores and conductor nominal cross section	Outer diameter (d) max.		Weight	Part No.	Characteristic wave impedance approx.	Core group	Colour code
Profibus (1x2x0.64mm)	[mm²]	[mm]	[kg/km]	[kg/km]		[Ω]		
CFROBOT8.PLUS.001	(2x0.25)C	9.0	30	75	CFROBOT8.PLUS.001	150	(2x0.25)C	red, green
Ethernet/CAT5e/PoE								
CFROBOT8.PLUS.045	(4x(2x0.15))C	7.5	32	60	CFROBOT8.PLUS.045	100	(4x(2x0.15))C	white-blue/blue, white-orange/orange, white-green/green, white-brown/brown
Profinet								
CFROBOT8.PLUS.060	(4x0.38)C	7.0	32	64	CFROBOT8.PLUS.060	100	(4x0.38)C	white, orange, blue, yellow (Star-quad)

Note: The given outer diameters are maximum values and may tend toward lower tolerance limits. **G** = with green-yellow earth core **x**= without earth core

196

Hybrid cables | PUR

- For torsion applications
- PUR outer jacket
- Unshielded/shielded
- Oil resistant and coolant-resistant
- Flame-retardant
- PVC and halogen-free
- Notch-resistant
- Hydrolysis and microbe-resistant

Dynamic information

Bend radius

d radius e-chain® twisted min. 10 x d

flexible min. 8 x d

fixed min. 5 x d

Temperature e-chain® twisted -25 °C to +80 °C

flexible -40 °C to +80 °C (following DIN EN 60811-504)

fixed -50 °C to +80 °C (following DIN EN 50305)

v max. twisted 180 °/s

a max. twisted 60 °/s²

Movement type Robots and 3D movements, Class 1

Torsion ± 180°, with 1 m cable length, Class 3

Cable structure

Conductor Stranded conductor in especially bending-resistant version consisting of bare

copper wires (following DIN EN 60228). Mechanically high-quality TPE mixture.

Core insulation

Core identification ► Product range table

Extremely torsion-resistant tinned wound copper shield.

Cover approx. 85% visual.

Outer jacket

Low-adhesion, halogen-free, highly abrasion-resistant PUR mixture, adapted to

suit the requirements in e-chains® (following DIN EN 50363-10-2).

Colour: steel blue (similar to RAL 5011)

Electrical information

Nominal voltage 300/500 V (following DIN VDE 0298-3)

Testing voltage

chainflex® CFR0B0T9

oltage 2000 V (following DIN EN 50395)

Class 6.1.3.3

Basic requirements
Travel distance
Oil resistance
Torsion

Properties and approvals

UV resistance High

Oil resistance Oil-resistant (following DIN EN 50363-10-2), Class 3

Flame-retardant According to IEC 60332-1-2, CEI 20-35, FT1, VW-1

Silicone-free Free from silicone which can affect paint adhesion (following PV 3.10.7 – status 1992)

Halogen-free Following DIN EN 60754

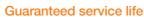
UL/CSA Cores ≤ 0.5mm²: Style 10467 and 20317, 300V, 80°C Cores > 0.5 mm²: Style 10493 and 20317, 300 V, 80 °C

NFPA Following NFPA 79-2012, chapter 12.9

EAC Certificate No. RU C-DE.ME77.B.01254 (TR ZU)

CTP Certificate No. C-DE.PB49.B.00416 (fire protection)

CEI Following CEI 20-35


Lead-free Following 2011/65/EC (RoHS-II)

Cleanroom

According to ISO Class 1. The outer jacket material of this series complies with

CF77.UL.05.12.D - tested by IPA according to standard DIN EN ISO 14644-1

CE^{CE} Following 2014/35/EU

Cycles *	5 million	7.5 million	10 million
Temperature, from/to [°C]	Torsion max. [°/m]	Torsion max. [°/m]	Torsion max. [°/m]
-25/-15	±150	±90	±30
-15/+70	±180	±120	±60
+70/+80	±150	±90	±30

^{*} Higher number of double strokes? Calculate service life online: ▶ www.igus.co.uk/chainflexlife

Typical application areas

- For heavy duty applications with torsion movements, Class 6
- Especially for robots and 3D movements, Class 1
- Almost unlimited resistance to oil, Class 3
- Torsion ± 180°, with 1m cable length, Class 3
- Indoor and outdoor applications, UV resistant
- Robots, handling, spindle drives

Hybrid cables | PUR

Class 6.1.3.3

Basic requirements
Travel distance
Oil resistance
Torsion

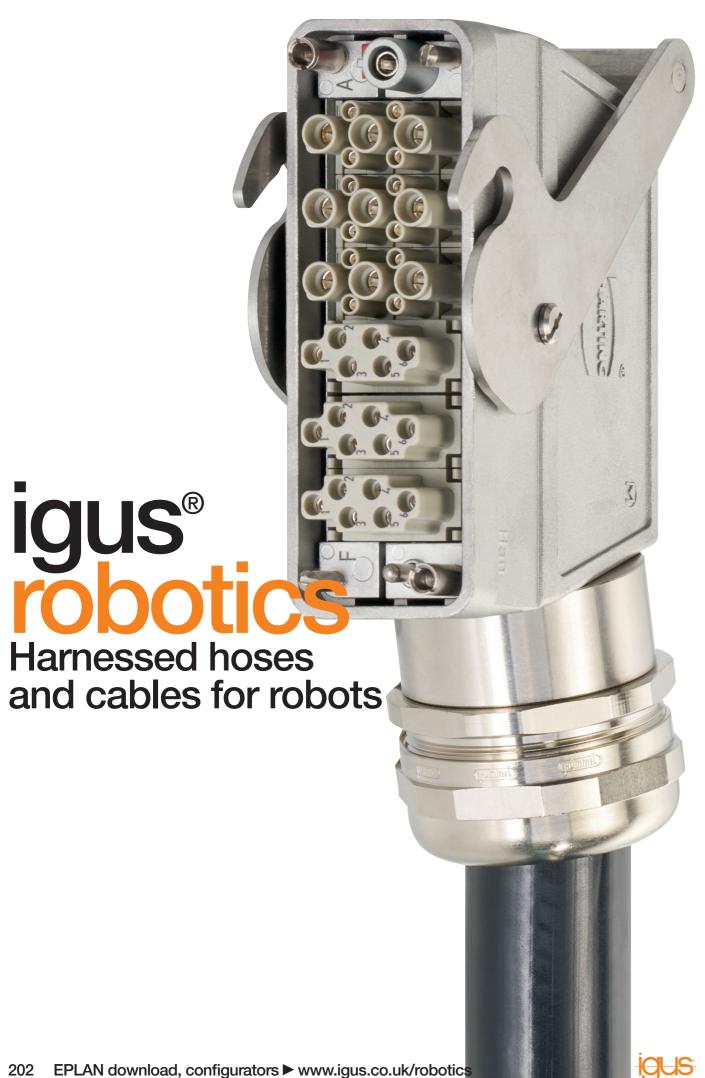
Example image

Part No.	Number of cores and conductor nom- inal cross section	Outer diameter (d) max.	Copper index	Weight	Part No.	Core group Colour code	
	[mm²]	[mm]	[kg/km]	[kg/km]			
CFROBOT9.001	5G1.0+(2x1.0)C	10.5	81	138	CFROBOT9.001	5G1.0 white with black numerals 1-4, one green-yellow core	
						(2x1.0)C white with black numerals 5-6	
CFROBOT9.004	16G1.0+(2x1.0)C	16.0	194	311	CFROBOT9.004	16G1.0 white with black numerals 1-4, 7-17 one green-yellow core	
						(2x1.0)C white with black numerals 5-6	
CFROBOT9.005 11)	23G1.0+(2x1.0)C	19.5	268	444	CFROBOT9.005	23G1.0 white with black numerals 1-4, 7-24 one green-yellow core	
						(2x1.0)C white with black numerals 5-6	
CFROBOT9.006 11)	24G1.0+(2x1.0)C	20.0	280	457	CFROBOT9.006	24G1.0 white with black numerals 1-4, 7-25, one green-yellow core	
						(2x1.0)C white with black numerals 5-6	
CFROBOT9.007	(15x(2x0.25)C+(4x0.25)C)C	18.5	229	368	CFROBOT9.007	15x(2x0.25)C Colour code in accordance with DIN 47100.	
						(4x0.25)C)C white/green/brown/yellow (CAN-Bus)	
CFROBOT9.010	(4x(2x0.25)C)C	10.5	62	117	CFROBOT9.010	4x(2x0.25)C)C white/brown, green/yellow, grey/pink, blue/red	
							- 1

Note: The given outer diameters are maximum values and may tend toward lower tolerance limits.

G = with green-yellow earth core x= without earth core

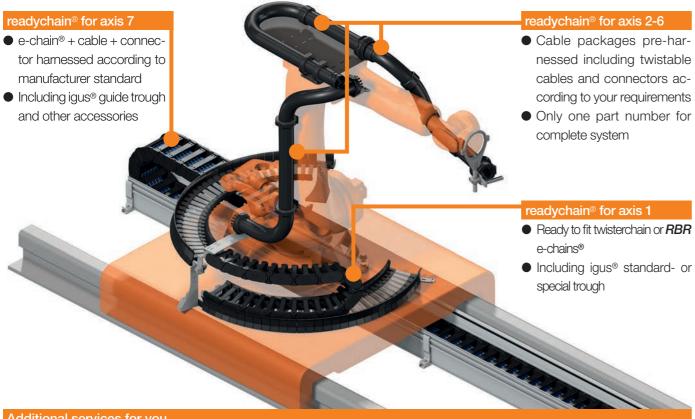
igus® chainflex® cables in triflex® R e-chain® for 6-axis robots



Selection table

chainflex® readychain® and readycable®

Cable type	Page	
Harnessed dress packs for robots		
readychain® robot Harnessed dress packs for welding robots	205	
Harnessed cables for robots		
readycable® Kuka Harnessed cables for KUKA robots	206	
readycable® Fanuc Harnessed cables for Fanuc robots	209	New
Cables according to AIDA specification		
readycable® AIDA Harnessed cables according to AIDA specification	211	New



Harnessed dress packs for welding robots. The packages consist of a triflex® R e-chain®, filled with chainflex® cables and hoses for the supply of energy, data and media. Users have the option of having the cables harnessed with connectors in accordance with 24 manufacturer standards. The dress packs allow a quick replacement of the energy supply.

readychain® robot

Ready to install harnessed e-chain systems® for robots

Assembled energy supply systems, connectors and cables from igus[®]. Everything from a single source. Direct from the manufacturer. Quick delivery to your robot, in 1-10 days.

Additional services for you

- Survey of existing systems on your robot by our sales engineers
- Optional system guarantee
- Worldwide readychain[®] specialists and 11 production sites for fast maintenance and spare part support

Energy supply for robots made configurable online: Around 10,000 different options for component selection for the energy supply on a robot

The QuickRobot robot equipment configurator from igus® offers around 10,000 different options for around 400 robot models. Display the compatible systems within seconds by entering the robot manufacturer and model. The desired chain size can also be selected by the diameter.

More information ▶ www.igus.co.uk/quickrobot

All igus® robotic components are tested in our laboratory and have already been used reliably in many applications for years. Our goal is to ensure that the whole energy supply on your robots is reliable. We do not simply focus on mechanical protection but instead look at the entire application including the cables that have also been especially developed for use on the robot. We will gladly find a solution for your application – and look forward to receiving your enquiry.

We are always happy to visit you on site and show you the advantages of the modular igus® robot kit.

John Slater Robotic and automotive plant specialist Mobile: 07964 945279 jslater@igus.co.uk

For QuickRobot example configurations, see ▶ page 12

Product range

triflex® readychain® dress packs for welding robots

Dress packs for welding robots

Product range Part No.

Dress pack

Welding axis 1-3

(1m projection/each end + 1m e-chain® for each)

RRC.S.001

Consisting of:

- 1m TRCF.85.135.0, including mounting brackets
- Welding cable (2x35mm² + 1x25mm²) including multi-contact TSB and TSS welding connector
- Control cable (18x0.75mm² + 5x0.75mm²) including rectangular connector on both ends
- Welding control cable (5x2x0.5mm²) including rectangular connector on both ends
- 3x hoses DN12 red, green, blue including fixtures on both ends

Welding axis 3-6

(1 m projection/each end + 1 m e-chain® for each)

RRC.S.002

Consisting of:

- 1m TRC.85.135.0 including protectors and mounting brackets
- Welding cable (2x35mm² + 1x25mm²) including multi-contact TSB and TSS welding connector
- Control cable (18x0.75mm² + 5x0.75mm²) including round connector and rectangular connector
- Welding control cable (5x2x0.5 mm²) including rectangular connector on both ends
- -3x hoses DN12 red, green, blue including fixtures on both ends

readycable® robot

Harnessed cables - Kuka Quantec

Harnessed cables - Kuka Quantec				
Harnessed cable Cable type Part No.	les for Kuka Quantec, to chainflex® cable	your required le Manufactur- er's designa- tion	Number of cores and conductor nominal cross section	Ø
			[mm ²]	[mm]
Motor cable (Straight sock	cet)			the contract of the contract o
MAT904105003	CFSPECIAL.792.011	X30/X30.1	(5x(2x6.0+2x2.5)+(2x(6x1.0)C)C	35.5
Motor cable (Angled socke	et)		<u> </u>	
MAT904105004	CFSPECIAL.792.011	X30/X30.1	(5x(2x6.0+2x2.5)+(2x(6x1.0)C)C	35.5
Data cable	1			
MAT904105005	CFBUS.PUR.H01.060	X31/X31.1	(4x0.38)C+4x1.5	11.5
Motor cable Single axis (ax	xis 7)	igus ()		
MAT904105006	CF270.UL.25.15.02.01.D	XM/X	(4G2.5+(2x1.5)C)C	14.0
MAT904105007	CF270.UL.40.15.02.01.D	XM/X	(4G4.0+(2x1.5)C)C	15.0
Motor cable Single axis (ax	xis 7)	88(1)		() g.e
MAT904105008	CF270.UL.60.15.02.01.D	XM/X	(4G6.0+(2x1.5)C)C	16.5
Control cable (axis 7)				
MAT904105009	CF112.02.04.02	Control cable single axis	(4x(2x0.25)C)C	11.0
Earth-core				
MAT904105010	CFPE.160.01	Connector plate/robot	1G16.0	9.5

	Harnessed	cables for Kuka	Fortec, to your required leng	th	
Cable type Part No.	chainflex® cable	Manufactur- er's designa- tion	Number of cores and conductor nominal cross section	Ø	
			[mm ²]	[mm]	-
Motor cable (Angled sock	cet)		/	-	
MAT904105011	CFSPECIAL.792.014	X30.1/X30.1.1	((6x1.5)C+3x(3x4)+1G6)C		
MAT904105012	CFSPECIAL.792.013	X30.4/X30.4.1	(2x(3x1.5)C+3x(3x10)+1G10)C	29.5	
Data cable	1				
MAT904105005	CFBUS.PUR.H01.060	X31.1/X31.1	(4x0.38)C+4x1.5	11.5	
Motor cable Single axis (a	axis 7)	igus ()			(igus:
MAT904105006	CF270.UL.25.15.02.01.D	XM/X	(4G2.5+(2x1.5)C)C	14.0	
MAT904105007	CF270.UL.40.15.02.01.D	XM/X	(4G4.0+(2x1.5)C)C	15.0	
Motor cable Single axis (a	axis 7)	(0.5 ())			(are)
MAT904105008	CF270.UL.60.15.02.01.D	XM/X	(4G6.0+(2x1.5)C)C	16.5	
Control cable (axis 7)					
MAT904105013	CF112.02.04.02	Control cable single axis	(4x(2x0.25)C)C	11.0	
Earth-core				_	

readycable® robot Harnessed cables - Kuka Titan

namesse	ed cables - K	uka ma	N		
Cable type	Harnessed chainflex®		a Titan, to your required length	o Ø	
Part No.	cable	Manufacturer's Number of cores and condesignation ductor nominal cross section ∅			
			1		
			[mm²]	[mm]	
Motor cable	9	-			
(Angled sock	cet)				
	ari				
MAT904105011	CFSPECIAL.792.014	X30.1/X30.1.1	((6x1.5)C+3x(3x4)+1G6)C	28.0	
MAT904105014	CFSPECIAL.792.014	X30.2/X30.2.1	((6x1.5)C+3x(3x4)+1G6)C		
MAT904105015	CFSPECIAL.792.014	X30.3/X30.3.1	(2x(3x1.5)C+3x(3x10)+1G10)C	29.5	
Data cable	1				
	T T		9	Co.my	
MAT904105005	CFBUS.PUR.H01.060	X31/X31.1	(4x0.38)C+4x1.5	11.5	
Mataraalala	_		_		
Motor cable Single axis (a	axis 7)	igus bil.		igus	
,				0 .50	
MAT904105006	CF270.UL.25.15.02.01.D	XM/X	(4G2.5+(2x1.5)C)C	14.0	
MAT904105007	CF270.UL.40.15.02.01.D	XM/X	(4G4.0+(2x1.5)C)C	15.0	
Motor cable					
Single axis (a	axis 7)	gus ()		() as	
MAT904105008	CF270.UL.60.15.02.01.D	XM/X	(4G6.0+(2x1.5)C)C	16.5	
0					
Control cable (axis 7)		350	-		
,					
MAT904105013	CF112.02.04.02	Control cable	(4x(2x0.25)C)C	11.0	
		single axis	(1/(2/0.20)0)0		
Earth-core	(
MAT904105010	CFPE.160.01	Connector	1G16.0	9.5	
		plate/robot			

Part No.	chainflex® cable	Manufactur- er's designa-		Ø
		tion	cross section [mm²]	[mm]
			[11111]	[11111]
Motor cable / Extension cab	le axis 7			
MAT904117141	CFSPECIAL.792,015	RM1.2	(7x(6x2.0))C	36.5
Motor cable/ Extension cab	le axis 7			
MAT904117142	CFSPECIAL.792,015	RM2.2	(7x(6x2.0))C	36.5
Pulse coder/ Extension cab	le axis 7			
MAT904117143	CFSPECIAL.792,016	RP1.2	(5x(4x0.25) +10x(3x0.75))C	26.5
Earth core/ Extension cab	le axis 7	0		
MAT904117144	CFPE.160.01	Earth-core	1G16.0	9.5
Earth core/ Extension cab	le axis 7	0=	_	
MAT904117145	CFPE.60.01	Earth-core	1G6.0	7.0
Motor cable si	ngle axis (Axis 7)			
MAT904117146	CF270.UL.60.15.02.01.D	RM7.2	(4G6.0+(2x1.5)C)C	16.5
Pulse coder si	ngle axis (axis 7)			
	CF240.PUR.03.03		(3x0.34)C	6.0

readycable® robot Harnesses cables - Fanuc M-900iB New

	Harnessed cables	for Fanuc R-200	0iC, to your required le	ngth
Part No.	chainflex® cable	Manufactur- er's designa- tion	Number of cores and	Ø
			[mm ²]	[mm]
		-		
Motor cable / Extension cabl	e axis 7			
MAT904117141	CFSPECIAL.792,015	RM1.2	(7x(6x2.0))C	36.5
Pulse coder/ Extension cabl	e axis 7		2	
MAT904117143	CFSPECIAL.792,016	RP1.2	(5x(4x0.25) +10x(3x0.75))C	26.5
Earth core/ Extension cable axis 7		0		
MAT904117144	CFPE.160.01	Earth-core	1G16.0	9.5
Earth core/ Extension cable axis 7				
MAT904117145	CFPE.60.01	Earth-core	1G6.0	7.0
Motor cable single axis (Axis 7)				
MAT904117146	CF270.UL.60.15.02.01.D	RM7.2	(4G6.0+(2x1.5)C)C	16.5
Pulse coder sir	ngle axis (axis 7)			
MAT904117147	CF240.PUR.03.03 + CF113.05.04.02	RP7.2	(3x0.34)C (4x(2x0.5))C	8.0

Part No.	chainflex® cable	Number of cores and conductor nominal cross	Ø	
	Cable	section		
		[mm ²]	[mm]	
	Е	xtension cable axis 7		
AIDA Profinet - RJ-45	a a			
MAT904117091	CFBUS.PUR.060	(4x0.38)C	7.0	
AIDA Profinet FOC	•			
MAT904117092	CFLK.L1.02	1x980/1000 μm	7.0	
AIDA Power	2	(« »		(» J
MAT904117093	CF77.UL.25.05.D	5G2.5	10.5	
AIDA Signal	<u>•</u>			
MAT904117094	CF211.PUR.05.05.02	(5x(2x0.5))C	10.5	
	Ext	tension cable axes 1-6		
AIDA Profinet - RJ-45				
MAT904117095	CFROBOT8.060	(2x(2x0.34))C	8.5	
AIDA Profinet FOC 1)	•			
upon request 1)	CFLK.L1.02	1x980/1000μm		
AIDA Power	_			* * * * * * * * * * * * * * * * * * *
MAT904117097	CF77.UL.25.05.D	5G2.5	10.5	
AIDA Signal	<u> </u>			
MAT904117098	CFROBOT3.05.05.02	(5x(2x0.5))C	12.5	

^{*}AIDA = AutomatisierungsInitiative Deutscher Automobilhersteller (Automation Initiative of German Automobile Manufacturers) 1) Offer according to technical examination of the application

Note: The given outer diameters are maximum values and may tend toward lower tolerance limits.

G = with green-yellow earth core x= without earth core

igus readychain Ready to install harnessed e-chainsystems for robots

Assembled energy supply systems, connectors and cables from igus[®]. Everything from one source, directly from the manufacturer, delivered quickly to your machine

Ready-to-install systems, from connectors through assembled cables up to complex energy supply modules, delivered in 1-10 days

Customer-specific production

readychains® - increase your capacity and cash flow quickly with igus®

- Reduce overhead costs
- Reduce your throughput times from days to hours
- Respond flexibly to order variations
- Utilise igus® manufacturing capacities and our know-how in cable assembly

From one off to mass production

Reduce the number of suppliers and orders by 75% with igus®

- One order, one invoice, one delivery
- A partner for minimal machine downtimes
- All readychain® components are subject to an extensive quality control and function testing

readychain[®]

You decide, igus® delivers

Industrially harnessed energy chain modules direct from the manufacturer ... You decide the quantity, the travel and the degree of harnessing ...

Benefits: readychain® basic

- ONE supplier combine all component suppliers
- Reduce assembly time
- Reduce failures

Reduction of assembly time Reduction of logistics cost

Benefits: readychain® standard

- 4 No electrical termination needed
- 6 100% digitally tested
- 6 No cable surplus

Reduction of assembly time Reduction of logistics cost

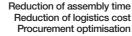
Further information, videos, configurators and product finders

Benefits: readychain® standard+

- Reduce interfaces
- Optimise connections/interfaces
- Ready-to-install multi-axis system

Reduction of logistics cost

Further information, videos, configurators and product finders


Benefits: readychain® premium

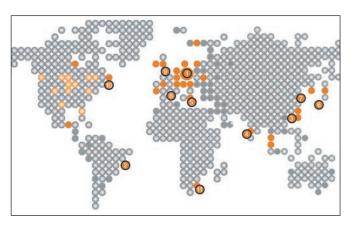
- Optimise your transport / assembly
- 1 One single assembly
- Pone Part No. / Product group

S 3D CAD, configurators, service life calculation and more ➤ www.readychain.co.uk

Plug & play

Further information, videos, configurators and product finders

igus® readychain® factory


Up to 1,600 readychain® systems per week, over 4,700m² floor space, "chain-cableguarantee" since 1989. 3 shifts, 24 project engineers, 359 employees just for assembly

In the igus® readychain® factory, we assemble customised e-chain systems®. All under one roof

Up-to-date production processes, custom-build or serial production

12 readychain® factories worldwide

Full service from system acceptance to installation

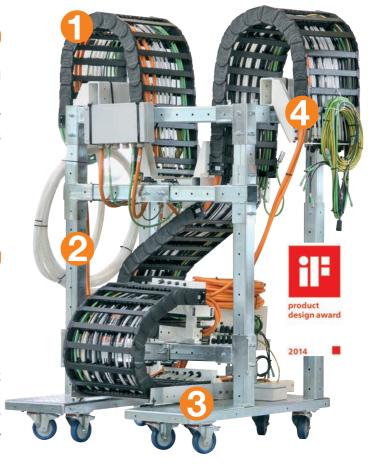
Customised cable assembly

readychain® rack Modular, quick and ready-to-install

Everything from one source

The readychain® system includes pre-assembled, customised e-chain systems®. The "Plug & Play" solutions are configured, manufactured and delivered according to individual customer specifications. The use of the mounting rack can yield benefits even at low quantities.

Flexible components


The telescopic supports and braces of the readychain® rack allow flexible adaptation to the installation needs on site. Changes in serial production can be undertaken easily. By using modular parts, additional components can also be easily attached to the rack.

The components of the readychain® rack are galvanised and thus designed for a long life. Each rack can be constructed within a few hours. The individual elements can be reused at any time removing the need to dispose of custom made parts, such as conventional welded transport racks.

Precise fitting "Plug & Play"

All interfaces and attachments are designed in such a way that the installation of the e-chain® can be managed quickly and easily. The complete package includes the matching plugs and connectors, plates, sensor actuator boxes, linear bearings, links to the central lubrication, etc., all reducing the installation time considerably.

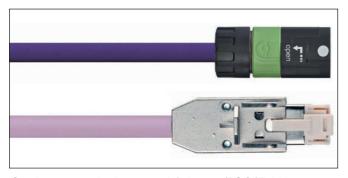
80% savings during prototyping. Assembly transport rack for ready-to-install energy supply systems.

igus readychain Connectors, cables and accessories

igus® connectors

Square connector kit

Tools and accessories


igus® readycable®

4,400 drive cables in accordance with 24 manufacturer standards, from stock

Catalogue standards: Video/vision/bus technology

Catalogue standards: network/ethernet/FOC/Field bus

Catalogue standards: CF.INI initiator cables up to 4 x d

igus® hoses and attachments

Configured online with hose cable configurator

readychain[®]

Configured, fitted, with system guarantee

System acceptance

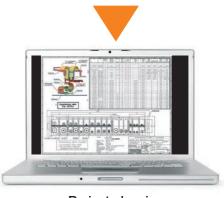
Project phase

Initial acceptance of prototype

igus® installation

readychain® service

- We visit you Define interfaces
- Logistics planning
- Cycle integration



System acceptance on your machine

readychain® service

- Component selection
- Interface optimisation
- Documentation
- Integrated project management
- Cost optimisation

Project planning

readychain® Skype service*

- Initial acceptance from your work place
- Build your prototype with an igus[®] project engineer, live in your meeting
- Your requests for changes explained with a model or visit us for production acceptance
- *Only available in Germany

Prototype including transport rack

readychain® installation

- System installation by igus[®] specialists
- igus® supervision service for your own installation
- Transparent, fixed price

Installation on site

217

igus readychain Cable assembly

Capacity for 600,000 assembled cables a year, more than 18,000 test programmes, 1,800 test adapters

Process reliability - crimp forces monitored, automated and time-optimised

Computer-based high-voltage testing and inspection of all assembled cables

Guarantee

Modern machinery - automatic stripper-crimper

Worldwide system guarantee

readychain[®] igus[®] - everything from stock

In our warehouse the material waits for your order and not your order for the materials!

... chainflex® cables ...

e-chains®...

100,000 e-chain® components

Hundreds of metres of guide trough

3,800m² test lab - more than 15,000 tests every year

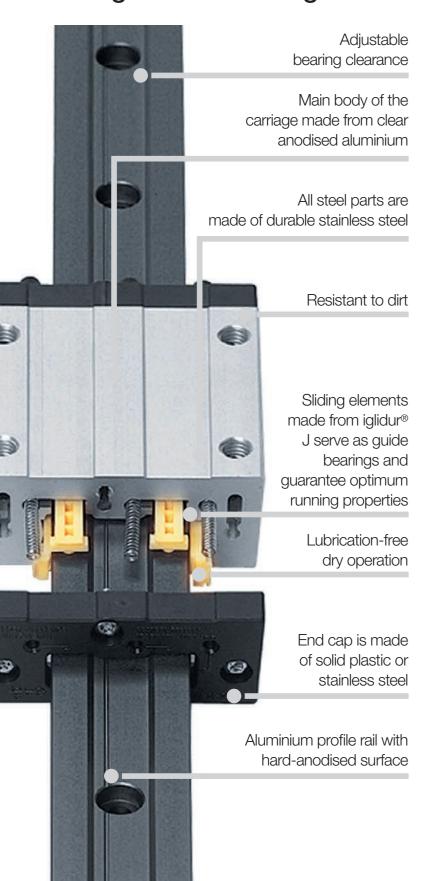
... harnessing

5,000 connector components

Everything quickly within reach


Numerous strain relief solutions

More than 8,000 cables per week



Just-In-Time supply

Special cable assemblies to your specifications

drylin® Tadvantages Sliding instead of rolling

For applications in automation and handling drylin® T

igus® drylin® T rail guide systems were originally developed for applications in both automation and materials handling. The goal was to create a high performance, maintenance-free linear guide for use in the most diverse, even extreme environments. Their dimensions are identical to most recirculating ball bearing guides.

- Lubrication-free
- Adjustable bearing clearance
- Automatic clearance adjustment
- High static load capacity
- Service life up to 50,000 km without lubrication
- Dirt-resistant
- Low vibration and quiet

Welding tongs on a robot head with igus® drylin® T

Available from stock. Ready to ship in 24 - 48hrs.*

*The delivery times indicated correspond to the average time until the ordered goods are dispatched.

More information ▶ www.igus.co.uk/drylinT

Overview

Product

Specification

Standard

- Supplied pre-set and can be put into operation at once
- Manual clearance adjustment or fine tuning
- Maintenance-free without lubrication
- Corrosion-free

Automatic

- With a mechanism that automatically adjusts the bearing clearance after removal of the pre-load key and adjusts during operation
- Maintenance-free without lubrication
- Corrosion-free

With manual clamp

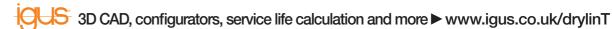
- Carriage with adjustable clearance (manual clearance adjustment)
- Maintenance-free dry operation
- Corrosion-free

- Used for the most extreme conditions (dirt, adhesive residues, chips, mud, etc.)
- Plastic sliding elements are fixed in the cover plate and are therefore permanent

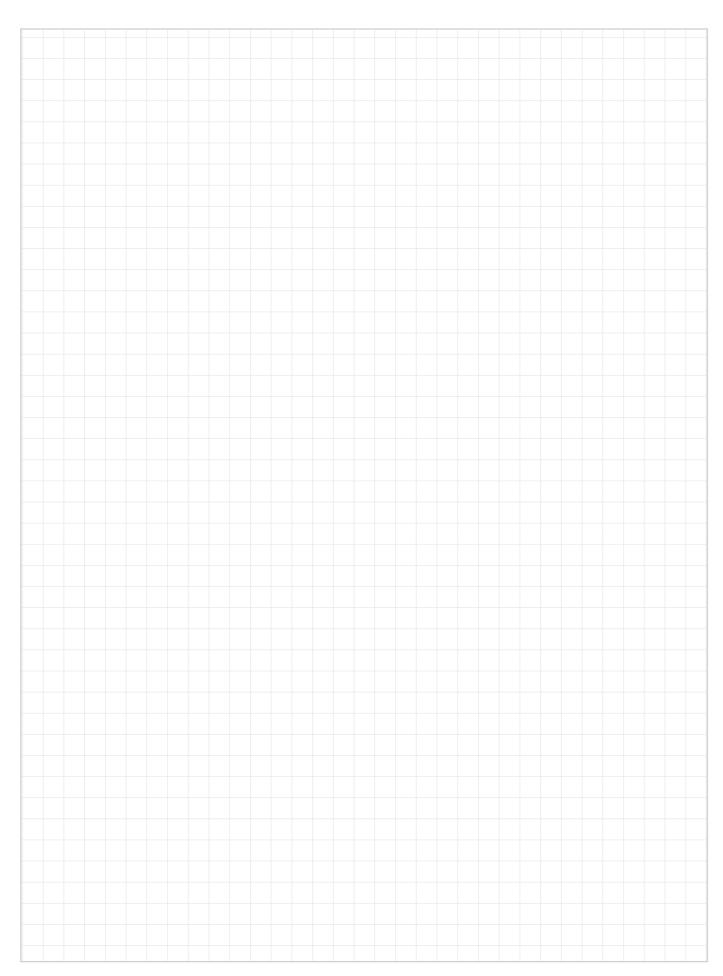
- Narrow linear guide carriage for small installation spaces
- Plastic sliding elements are fixed in the cover plate and are therefore permanent

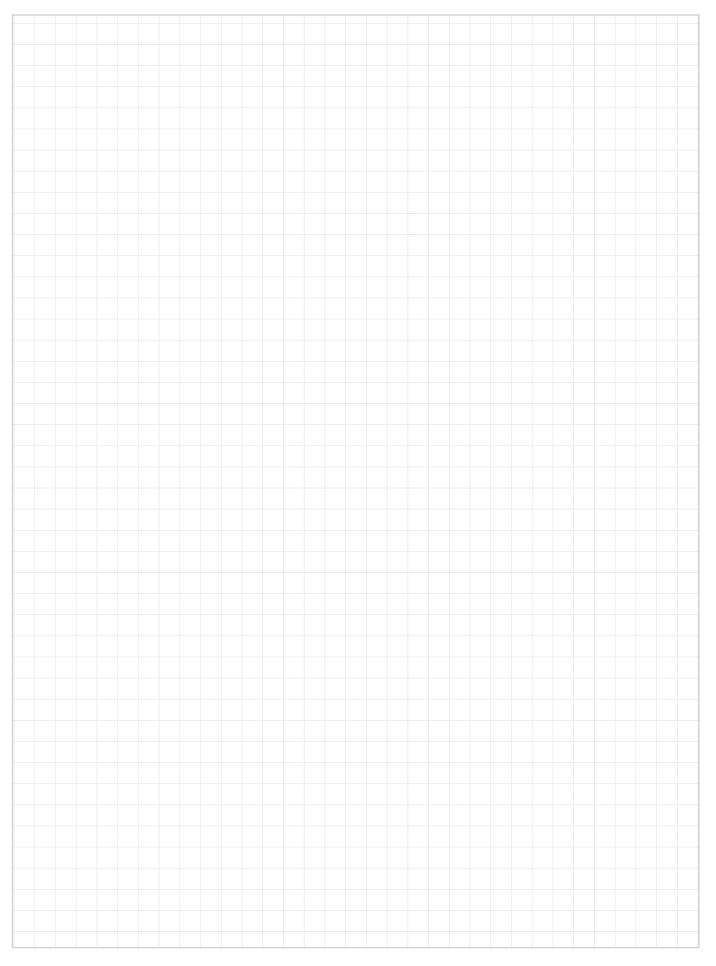
Low-profile guide

- Small, compact, lubrication-free
- Easy to install
- Rugged and cost-effective

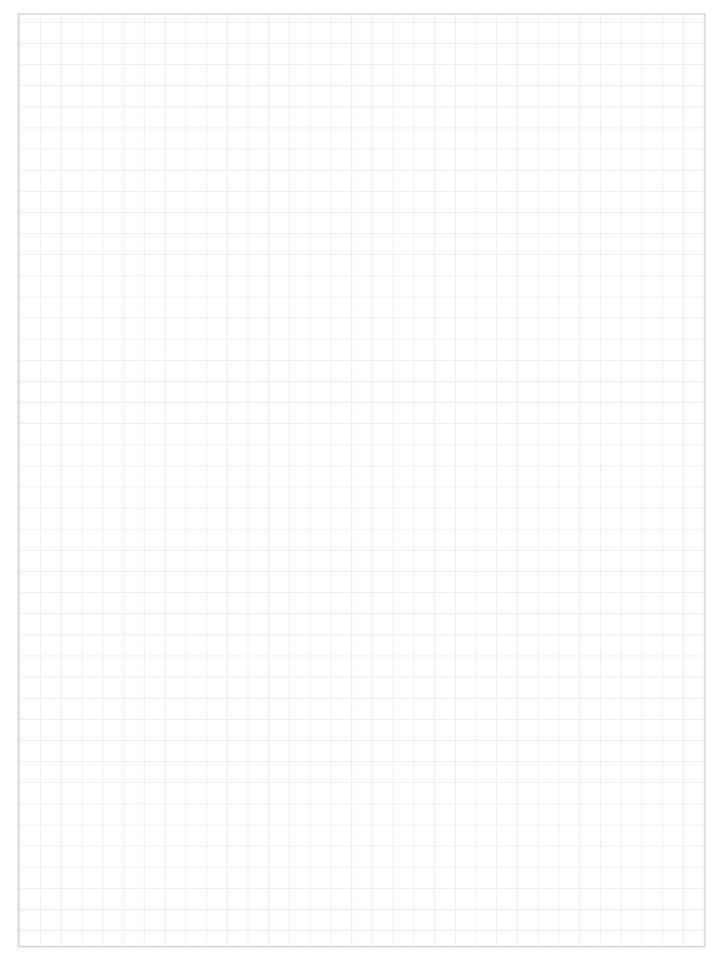


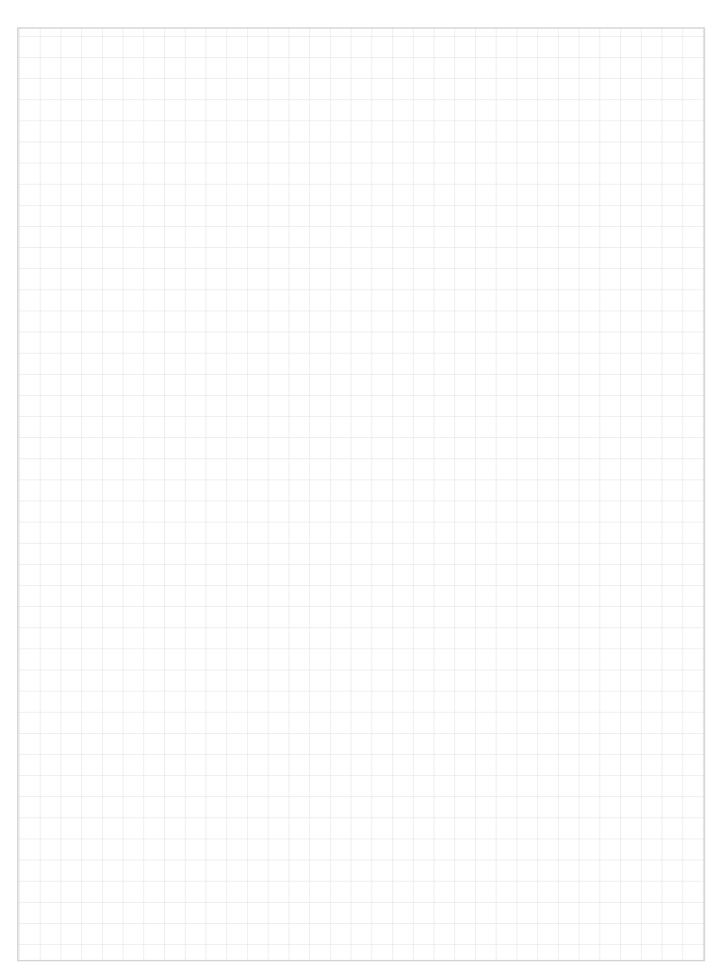
- Compact and strong clamps for all sizes
- Holding force up to 500N

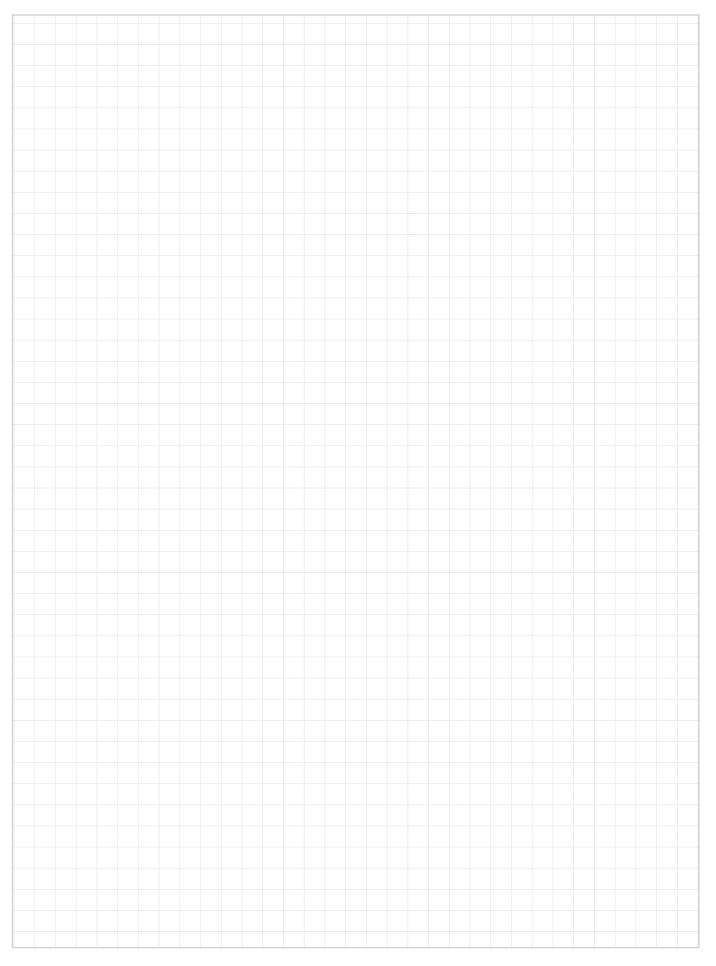


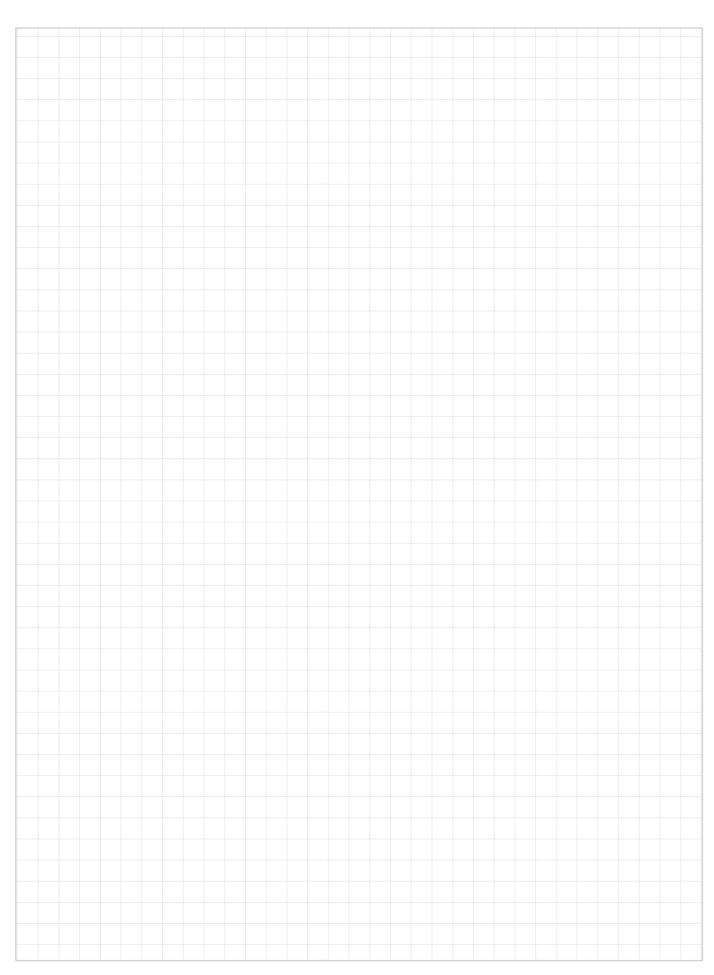

The complete range with ordering options,

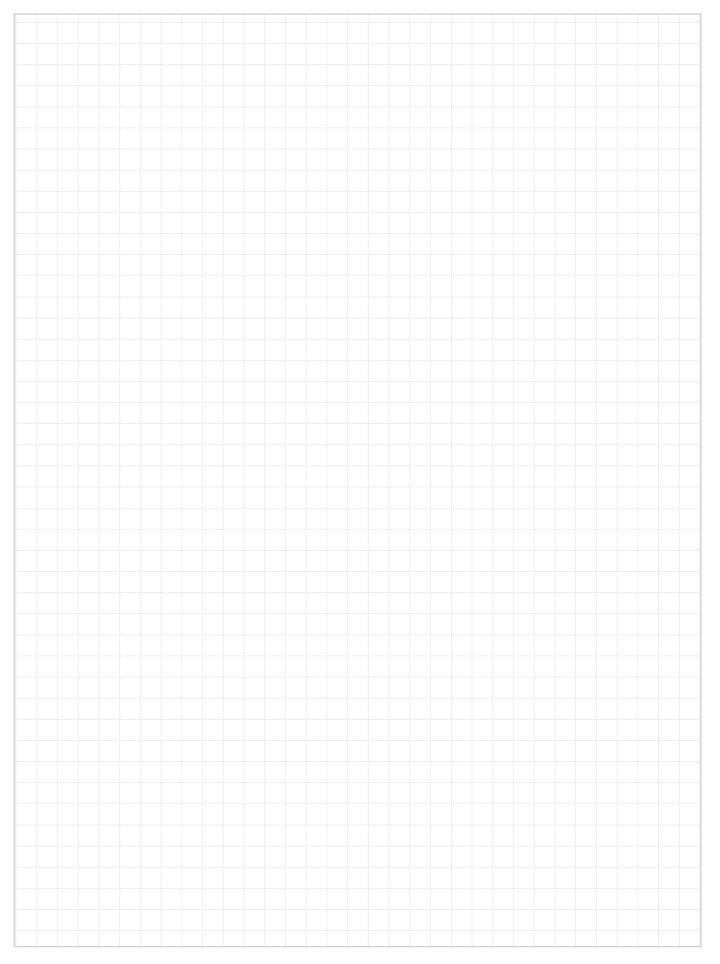

3D-CAD, configurators, PDFs, application examples ▶www.igus.co.uk/drylinT




221







igus[®] locations

230

2 Argentina

Borintech SRL

Av. Elcano 4971 C1427CIH Buenos Aires Phone +5411 4556 1000 Fax +5411 4556 1000 iaus@borintech.com

3 Australia

Treotham Automation Pty. Ltd. 14 Sydenham Road Brookvale NSW 2100 Phone +61 2 9907-17 88 Fax +61 2 9907-1778 info@treotham.com.au

igus® polymer Innovationen GmbH Photo-Play-Straße 1 4860 Lenźing Phone +43 7662 57763 Fax +43 7662 5775

igus-austria@igus.de

5 Belarus

SOOO Hennlich Puschkin ave. 39 amt 5 BY 220092 Minsk Republik Belarus

Phone +375 17 207-1828 Fax +375 17 207-3921 info@hennlich.by

igus® B.V.B.A. lagersdreef 4A

2900 Schoten Phone +32 3 330 13 60 Fax +32 3 313 79 91 info@iaus.be

7 Bosnia + Herzegovina

Hennlich d.o.o. Tvornička 3 (Energoinvest-zgrada C&O) 71210 Ilidža - Sarajevo Phone +387 33 451 439 Fax +387 33 451 439

info@hennlich.ba

igus® do Brasil Ltda.

Rua Antônio Christi, nº 611 Parque Industrial III - FAZGRAN Jundiaí - CEP 13213-183 - SF Phone +55 11 3531-4487 Fax +55 11 3531-4488 vendas@igus.com.br

igus® EOOD , Lui Ayer str., fl.4. off. 4 1404 Sofia, Bulgaria Phone +359 2 850 8409 Fax +359 2 850 8409 info@igus.bg

9 Bulgaria

Hennlich OOD, BG 4003 Plovdiv, Bulgaria 147A. Brezovsko shose Str. Rota center, fl. 3 Phone +359 32 511 326 Fax +359 32 621 929 office@hennlich.bg

igus® Office Canada Suite 100-180 Bass Pro Mills Dr Vaughan, ON L4K 5W4 Phone +1 905 7608448 Fax +1 905 7608688 webmaster@igus.com

11 Chile

Vendortec

Avda. Los Pajaritos 3195, Oficina 1410 Edificio Centro Maipú Maipú – Santiago Phone +56 22 710 58 25 +56 23 245 02 00 ventas@vendortec.cl

igus® Shanghai Co., Ltd. n 46 Warehouse 11 Debao Road, WGQ FTZ, Shanghai 200131, P R China Phone +86 21 51303100 +86 21 51303200 master@igus.com.cn

13 Colombia

Colsein Ltda

Parque Industrial Gran Sabana Edificio / Building 32 Tocancipá, CUN 251017 Phone +57-1-519-0967

14 Costa Rica

Enesa Equipos Neumaticos S.A. Del Colegio Marista

100 este, 200 sur, 25 este Urbanizacion Ciruelas Alaiuela, Costa Rica Phone +506 2440-2393 Fax +506 2440-2393 equiposneumaticos@enesa.net

15 Croatia

Hennlich, Industrijska

d.o.o. Stupničkoobreška 17 Stupnički Obrež 10255 Gornji Stupnik Phone +385 1 3874334 +385 1 3874336 hennlich@hennlich.hr

16 Czech Republic

HENNLICH s.r.o. českolipská 9 412 01 Litoměřice Phone e-chains® +420 416 711332

Phone Plain bearings +420 416 711339 +420 416 711999 lin-tech@hennlich.cz

igus® ApS Lysholt Alle 8 DK-7100 Veile Phone +45 86 603373 +45 86 60 32 73 info@igus.dk

18 Ecuador

Ecuainsetec Yugoeslavia N34-110 y Azuay

Phone +593 2 2253757 Fax +593 2 2461833 infouio@ecuainsetec.com.ec

19 Egypt

IEE International Company for Electrical Engineering Down Town, Cairo Phone +202 25767370 Fax +202 25767375 kamel@iee-egypt.com

igus® OÜ Lõõtsa 4A Tallinn 11415 Phone +372 667 5600 Fax +372 667 5601 info@igus.ee

21 Finland

20 Estonia

OEM Finland OY Fiskarsinkatu 3

20750 Turku PL 9, 20101 Turku Phone +358 20 7499499 Fax +358 20 7499456 info@oem.fi

21 Finland

SKS Mekaniikka Oy Martinkvläntie 50 01720 Vantaa

Phone +358 20 76461 Fax +358 20 7646824 sales.mekaniikka@sks.fi

22 France

igus® SARL 49, avenue des Pépinières Parc Médicis 94260 Fresnes Phone +33 1 49840404

Fax +33 1 49840394

info@igus.fr 23 Greece

J. & E. Papadopoulos S.A. 12 Polidefkous str

Piraeus, 185 40 Phone +30 210 4113133 Fax +30 210 4116781 sales@papadopoulos-sa.com

23 Greece

Chrismotor s.a. 71, Sp. Patsi str. 118 55 Athens Phone +30 210 34 25574 Fax +30 210 3425595 info@chrismotor.gr

24 Hong Kong

Sky Top Enterprises Ltd. Room 1806 : Block C: Wah Tat Industrial Center: Wah Sing Street: Kwai Chuna Hona Kona Phone +852 23318928 Fax +852 24269738 info@skytop.com.cn

25 Hungary igus® Hungária Kft. lpari Park u.10. 1044 Budapest Phone +36 1 3066486

Fax +36 1 4310374

info@iaus.hu 25 Hungary

Tech-Con Kft. Vésõ utca 9-11 1133 Budapest Phone +36 1 4124161 Fax +36 1 412 4171 tech-con@tech-con.hu

26 India

igus® (India) Pvt. Ltd. Sv No. 17/3 Euro School Road Dodda Nekkundi Industrial Area, - 2nd Stage Mahadevapura Post Bangalore 560048 Phone +91 80 45127800 Fax +91 80 45127802

info-in@igus.net

PT igus® Indonesia Headquarter Indonesia Taman Tekno BSD Sektor XI Blok I 1 No. 15 Tangerang Selatan 15314 Phone +62 21 7588 1933 Fax +62 21 7588 1932 info@igus.co.id

igus® Ireland

Caswell Rd Northampton NN4 7PW Phone +44-1604 677240 Fax +44-1604 677242 sales@igus.ie

29 Israel

Conlog LTD P.O. Box 3265 17 Hamefalssim Str. Industrial Zone Kiryat Arie Petach-Tikva 49130 Phone +972 3 9269595 Fax +972 3 9233367 conlog@conlog.co.il

30 Italy

iaus® S.r.I. Jia delle Rovedine, 4 23899 Robbiate (LC) Phone +39 039 5906.1 +39 039 5906.222 igusitalia@igus.it

igus® k.k.

Arcacentral 15F, 1-2-1 Kinshi, Sumida-ku Tokyo JAPAN Zip 130-0013 Phone +81 358 192030 Fax +81 358 192055 info@igus.co.jp

32 Kenya

Mantrad Ltd.

Sterling House, 1St. Floor Moi Avenue, Mombasa Phone + 254 722 706 830 Fax + 254 720 765 566 info@mantrad.co.ke

33 Latvia

Techvitas SIA Daugavas iela 38-3 Märupe, LV-2167 Phone +372 667 5600 +372 667 5601 i igusLettland G@igus.de

34 Lebanon

Mecanix Shops SAL Horsh Tablet - Ste Rita blvd P.O.Box: 55384 Beirut Phone +961 1 486701 Fax +961 1 490929 sales@mecanixshops.com

35 Lithuania

Hitech IIAR Terminalo a. 3 54469 Biruliskiu k. (Kauno LEZ) Kauno raj. Phone +370 37 323271 +370 37 203273 info@hitech.lt

36 Macedonia, Albania,

Hennlich doo Beograd Radomira Markovića 1/3 11222 Beograd Phone +381 11 63 098 17 Fax +381 11 63 098 20 office@hennlich.rs

igus® Malaysia Sdn Bhd Suite 1601-1, Level 16, Tower 2, Wisma AmFirst, Jalan SŚ 7/15 (Jalan Stadium), 47301 Kelana Jaya, Selangor Phone +603 7803 0618 +603 7886 1328 info@igus.my

38 Morocco

AFIT Rue Amir Abdelkader 20300 Casablanca Phone +212 522 633769 Fax +212 522 618351 souria.vu@premium.net.ma

Dubai, United Arab Emirates Phone +971 4222 1185 Fax +971 4222 1186 info@jisigus.com

igus® México S. de R.L. de C.V.

Boulevad Aeropuerto Miguel

Col. Corredor Industrial Toluca Lerma

Lerma, Estado de México C.P. 52004

40 Middle East (except of UAE)

7. Jebel Ali Free Zone

JISigus Middle East FZE

Phone +52 728284 3185 Fax +52 728284 3187

Alemán 160 Int. 135

fmarauez@iaus.com

PO Box- 17483

41 Myanmar Sea Lion Co. Ltd. 181 Bo Myat Tun St Botataung Yangon 11161 Myanmai Phone +95 1 29 97 97 Fax +95 1 20 27 51

zaw.m.thant@sealionmyanmar.com

2 Netherlands

igus® B.V. Sterrenbergweg 9 3769 BS Soesterberg Phone +31 346 353932 Fax +31 346 353849 info@igus.nl

42 Netherlands dry-tech®

Elcee B.V. Kamerlingh Onnesweg 28 NL-3316 GL Dordrecht Phone +31 (0)78-654 47 77 Fax +31 (0)78-654 47 33

43 Nigeria

info@elcee.nl

Deepee Industrials Ltd. 11 Ishaga Road Surulere _aaos Phone +234 803 3899107 oachinike@gmail.com

44 New Zealand

Treotham Automation Pty Ltd. Stocking Distributor 13c Vogler Drive Wiri Auckland 2104 Phone +64 9 278 6577 ax +64 9 278 6578 info@treotham.co.nz

44 New Zealand

Automation Equipment Ltd. 26 Tawn Place PO Box 5656 Hamilton Phone +64 7 8490281 Fax +64 7 8492422 sales@autoequip.co.nz

45 Norway

ASI Automatikk AS Sankt Hallvards vei 3, port 8 3414 Lierstranda Phone +47 9006 1100 info@asiflex.no

46 Peru

PROIGUS S.A.C. Calle Bolivar 388/of, 203 Lima 18 - Perú Phone +51 1 2414370 Fax +51 1 2428608 profacoventas@profaco.com

47 Pakistan

GEMS International Trading 501, Windsong Place, Block 7&8, K.C.H.S, Off Shaheed-e-Millat Rd Karachi - 75350 Phone +92 21 34531505 marketing@gemsinter.com

48 Philippines Silicon Exponents Corp. Unit 1-B, 8414 LMN Bldg. Dr. A. Santos Avenue Brgy.BF Homes Sucat Parañaque City 1700 Philippines Phone +63 2 8250 126/135 Fax +63 2 8250 141 rvemrigor@sieplus.ph

49 Poland

igus[®] **Sp. z o.o.** ul. Działkowa 121C 02-234 Warszawa Phone +48 22 8635770 Fax +48-22 8636169 info@igus.pl

50 Portuga

igus® Lda. R. Eng. Ezequiel Campos, 239 4100-231 Porto Phone +351 22 6109000 +351 22 8328321 info@iaus.pt

Hennlich SRL Str. Patria, Nr17 310106 Arad Phone +40 257 211119 Fax +40 257 211021 igus@hennlich.ro

52 Russia

Room 14 Naberezhnaya reki Lazuri, 15A 170028 Tver Russian Federation Phone +7 4822 787 180 Fax +7 4822 787 180, add, 380

Radomira Markovica 1/3 11222 Beograd / Srbija office@hennlich.rs

54 Singapore- ASEAN HQ

igus® Singapore Pte Ltd 84 Genting Lane Singapore 349584 Phone +65 6487 1411 info@igus.com.sg

Hennlich s.r.o. Na Bystricku 16 SK-036 01 Martir Phone +421 43 421 2352 lintech@hennlich.sk www.hennlich.sk

0

ržaška c. 134 1000 Liubliana Sloveniia info@igus.si

51 Romania

000 Hennlich hennlich@hennlich.ru

53 Serbia + Montenegro

Hennlich doo Beograd Phone +381 11 63 098 17 Fax +381 11 63 098 20

#06-03 Axxel Innovation Centre

55 Slovakia

56 Slovenia

igus® d.o.o. Mob. +386 (0)30 601 610

56 Slovenia

Hennlich, d.o.o. Industriiska tehnika Podnart 33 SI-4244 Podnart Phone +386 4 53206-10 Fax +386 4 53206-20 info@hennlich.si

57 South Africa

igus® Pty. Ltd. nit 29 Midline Business Park Cnr Le Roux & Richards Drive Midrand 1682 Phone +27 11312-1848 Fax +27 11312-1594 sales.sa@igus.de

igus[®] Korea Co. Ltd. 613-14 Namchondong, Namdonggu Incheon City, 405-846 Phone +82 32 82129-11 +82 32 82129-13 info@igus.kr

00

30

igus® S.L.U. Čtra. Llobatona. 6 Polígono Noi del Sucre 08840 Viladecans - BCN Phone +34 936 473950 +34 936 473951 igus.es@igus.es

igus® AB Berga Allé 1 254 52 Helsingborg Phone +46 42 329270 +46 42 211585 info@igusab.se

60 Sweden - the-chain

OEM Automatic AB Box 1011 Dalagatan 4 573 28 Tranås Phone +46 75 2424100 Fax +46 75 2424159 info@oemautomatic.se

60 Sweden - dry-tech®

Colly Components AB Raseborgsgatan 9 P.O. Box 76 164 94 Kista Phone +46 8 7030100 Fax +46 8 7039841 info@me.colly.se

igus® Schweiz GmbH Winkelstr. 5 4622 Egerkingen Phone +41 62 388 97 97 Fax +41 62 388 97 99 info@igus.ch

igus® Taiwan Company Ltd. 5F. No. 35, 24th Boad Taichung Industrial Park Taichung 40850 Phone +886 4 2358-1000 Fax +886 4 2358-1100 info@igus.tw

64 Tunisia

65 Turkey

igus® Turkey

info@igus.com.tr

65 Turkey

BOUDRANT

53, Avenue de Carthage

1000 Tunis – Tunisia

Phone +216 71340244

Fax +216 71348910

info@boudrant.com.tn

Güzeller Org. San. Bölg.

Galvano Teknik San. Sit. Cumhurivet Cad. 2/32

P.K. 41400 Gebze / Kocaeli

Phone +90 262 502 14 08

Fax +90 262 502 14 19

HIDREL Hidrolik Elemanlar

34420 Karaköy / Istanbul

Phone +90 212 2494881

Emirates + Oman

Sharjah Airport Free Zone P.O. Box 120300

Phone +971 6 5578386

Fax +971 6 5578387

67 United Kingdon

iaus®

Caswell Rd

sales@igus.co.uk

automation@unigroup.ae

Northampton NN4 7PW Phone +44 1604 677240

+90 212 2920850

Sanayi ve Ticaret A.S.

Percemli Sk. No. 7

info@hidrel.com.tr

66 United Arab

Unigroup FZE

Sharjah - U.A.E.

Plot of Land M6-01

Tünel Mevkii

igus® Thailand Co., Ltd Hennlich Ukraine LLC (HQ) 340 Soi Bangkok-Nonthaburi 30, Kramatorska Street 15 84100 Slovyansk City, Donetsky Region Phone +38 06262 33540 hennlich@hennlich.com.ua Fax +66 (0)2 587 4898 info@igus.co.th

Ŏ

cominpro@gmail.com

69 Uruguay Larrique Rulemanes SA Galicia 1204 Montevideo-Uruguay Phone +598 29021773

Fax +598-29084824

larrique@larrique.com.uy

70 USA Phone +1 401 4382200 Fax +1 401 4387270 webmaster@igus.com

B-11 Valencia, Edo. Carabobo Phone +58 241 832 64 64

igus® Vietnam Company Ltd 1/7 Huvnh Lan Khanh Street District Tan Binh, HCM City Vietnam Phone +84 28 3636 4189 info@igus.vn

Issue 03/2019

Bangkok-Nonthaburi Rd., Bangsue, Bangsue Bangkok 10800 Phone +66 (0)2 587 4899

68 Ukraine

68 Ukraine

Cominpro Ltd. Romena Rollana 12, Office 220 61058 Kharkov Phone +38 0577174914 Fax +38 0577174914

31

iaus® inc. 257 Ferris Avenue P.O. Box 14349 East Providence RI 02914

71 Venezuela

Neumatica Rotonda C.A. Prolong Av. Michelena C.C. Atlas Locales B-10 v

+58 241 832 32 50 +58 241 838 88 19 Fax +58 241 832 62 83 ventas@neumaticar.com

Place your orders until late. Ordering and deliveries weekdays from 8.00 am to 8.00 pm, Saturday from 8.00 am to 12.00 pm. No minimum order quantity, no surcharges. Quick delivery.

www.igus.co.uk Phone: (01604) 677240

CO.UK/241

Buy online - 24hrs! www.igus.co.uk

igus® is certified in accordance with ISO 9001:2015 and IATF 16949:2016 in the field of energy supply systems, cables and harnessing, as well as plastic bearings.

Ask for fully harnessed and pre-assembled energy supply systems increase your cash-flow and profit immediately with readychain®. www.readychain.co.uk

wsletter

Free of charge! Discover more about the latest trends and innovations from the world of igus® motion plastics®. Register here: www.igus.co.uk/newsletter

igus® Caswell Road Northampton NN4 7PW Phone (01604) 677240 sales@igus.co.uk www.igus.co.uk

© igus® GmbH, Germany

